Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Impossible Is Possible: Laser Light from Silicon


Since the creation of the first working laser – a ruby model made in 1960 – scientists have fashioned these light sources from substances ranging from neon to sapphire. Silicon, however, was not considered a candidate. Its structure would not allow for the proper line-up of electrons needed to get this semiconductor to emit light.

Now a trio of Brown University researchers, led by engineering and physics professor Jimmy Xu, has made the impossible possible. The team has created the first directly pumped silicon laser. They did it by changing the atomic structure of silicon itself. This was accomplished by drilling billions of holes in a small bit of silicon using a nanoscale template. The result: weak but true laser light. Results are published in an advanced online edition of Nature Materials.

The feat is an apt one for Xu, whose Laboratory of Emerging Technologies is alternately known as the Laboratory of “Impossible” Technologies.

“There is fun in defying conventional wisdom,” said Xu, the Charles C. Tillinghast Jr. ’32 University Professor, “and this work definitely goes against conventional wisdom – including my own.”

Right now, the possible is not yet practical. In order to make his silicon laser commercially viable, Xu said, it must be engineered to be more powerful and to operate at room temperature. (Right now, it works at 200°C below zero.) But a material with the electronic properties of silicon and the optic properties of a laser would find uses in both the electronics and communications industries, helping to make faster, more powerful computers or fiber optic networks.

Xu said that when lasers were invented, they were considered a solution looking for a problem. Now lasers are used to power CD players and barcode scanners and cut everything from slabs of steel to delicate eye tissue during corrective surgery.

“Every new discovery in science eventually finds an application,” Xu said. “It will just take years of work to develop the technology.”

Light emission from silicon was considered unattainable because of silicon’s crystal structure. Electrons necessary for laser action are generated too far away from their “mates.” Bridging the distance would require just the right “matchmaker” phonon, arriving at precisely the right place and time, to make the atomic connection.

In the past, scientists have chemically altered silicon or smashed it into dust-like particles to generate light emission. But more light was naturally lost than created. So Xu and his team tried a new way to tackle the problem. They changed silicon’s structure by removing atoms.

This was accomplished by drilling holes in the material. To get the job done, the team created a template, or “mask,” of anodized aluminum. About a millimeter square, the mask features billions of tiny holes, all uniformly sized and exactly ordered. Placed over a bit of silicon then bombarded with an ion beam, the mask served as a sort of stencil, punching out precise holes and removing atoms in the process. The silicon atoms then subtly rearranged themselves near the holes to allow for light emission.

The new silicon was tested repeatedly over the course of a year to ensure it met the classical criteria of a laser, such as threshold behavior, optical gain, spectral line-width narrowing, and self-collimated and focused light emission.

Xu credits Sylvain Cloutier, a Ph.D. student and the Nature article’s first author, with the success of the experiment. “The whole thing started with my hunch that silicon could be altered this way and might surprise us with new behavior,” Xu said. “But Sylvain took the idea and ran. He conducted the first tests and set up the measurements. And he was skillful and careful enough to catch the first faint bit of laser light from the nanostructured silicon.”

“I felt thrilled and really curious when I first observed the light emission,” Cloutier said, “but I also knew there would be a lot of work ahead before demonstrating laser action.”

Postdoctoral research fellow Pavel Kossyrev independently verified the process and the results.

The Defense Advanced Research Projects Agency and the Office of Naval Research funded the work. Xu also received support from the John Simon Guggenheim Memorial Foundation, while Cloutier received support from the Natural Sciences and Engineering Research Council of Canada.

Wendy Lawton | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>