Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Impossible Is Possible: Laser Light from Silicon

22.11.2005


Since the creation of the first working laser – a ruby model made in 1960 – scientists have fashioned these light sources from substances ranging from neon to sapphire. Silicon, however, was not considered a candidate. Its structure would not allow for the proper line-up of electrons needed to get this semiconductor to emit light.



Now a trio of Brown University researchers, led by engineering and physics professor Jimmy Xu, has made the impossible possible. The team has created the first directly pumped silicon laser. They did it by changing the atomic structure of silicon itself. This was accomplished by drilling billions of holes in a small bit of silicon using a nanoscale template. The result: weak but true laser light. Results are published in an advanced online edition of Nature Materials.

The feat is an apt one for Xu, whose Laboratory of Emerging Technologies is alternately known as the Laboratory of “Impossible” Technologies.


“There is fun in defying conventional wisdom,” said Xu, the Charles C. Tillinghast Jr. ’32 University Professor, “and this work definitely goes against conventional wisdom – including my own.”

Right now, the possible is not yet practical. In order to make his silicon laser commercially viable, Xu said, it must be engineered to be more powerful and to operate at room temperature. (Right now, it works at 200°C below zero.) But a material with the electronic properties of silicon and the optic properties of a laser would find uses in both the electronics and communications industries, helping to make faster, more powerful computers or fiber optic networks.

Xu said that when lasers were invented, they were considered a solution looking for a problem. Now lasers are used to power CD players and barcode scanners and cut everything from slabs of steel to delicate eye tissue during corrective surgery.

“Every new discovery in science eventually finds an application,” Xu said. “It will just take years of work to develop the technology.”

Light emission from silicon was considered unattainable because of silicon’s crystal structure. Electrons necessary for laser action are generated too far away from their “mates.” Bridging the distance would require just the right “matchmaker” phonon, arriving at precisely the right place and time, to make the atomic connection.

In the past, scientists have chemically altered silicon or smashed it into dust-like particles to generate light emission. But more light was naturally lost than created. So Xu and his team tried a new way to tackle the problem. They changed silicon’s structure by removing atoms.

This was accomplished by drilling holes in the material. To get the job done, the team created a template, or “mask,” of anodized aluminum. About a millimeter square, the mask features billions of tiny holes, all uniformly sized and exactly ordered. Placed over a bit of silicon then bombarded with an ion beam, the mask served as a sort of stencil, punching out precise holes and removing atoms in the process. The silicon atoms then subtly rearranged themselves near the holes to allow for light emission.

The new silicon was tested repeatedly over the course of a year to ensure it met the classical criteria of a laser, such as threshold behavior, optical gain, spectral line-width narrowing, and self-collimated and focused light emission.

Xu credits Sylvain Cloutier, a Ph.D. student and the Nature article’s first author, with the success of the experiment. “The whole thing started with my hunch that silicon could be altered this way and might surprise us with new behavior,” Xu said. “But Sylvain took the idea and ran. He conducted the first tests and set up the measurements. And he was skillful and careful enough to catch the first faint bit of laser light from the nanostructured silicon.”

“I felt thrilled and really curious when I first observed the light emission,” Cloutier said, “but I also knew there would be a lot of work ahead before demonstrating laser action.”

Postdoctoral research fellow Pavel Kossyrev independently verified the process and the results.

The Defense Advanced Research Projects Agency and the Office of Naval Research funded the work. Xu also received support from the John Simon Guggenheim Memorial Foundation, while Cloutier received support from the Natural Sciences and Engineering Research Council of Canada.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>