Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SuperNova Legacy Survey - First results describing the nature of dark energy

22.11.2005


The SuperNova Legacy Survey collaboration started the largest survey yet launched to measure the distance to far supernovae. Distant supernovae are powerful tools to measure cosmological distances. The first results of the survey, to be published in Astronomy & Astrophysics, place strong constraints on cosmological models. In the near future, this new Legacy Survey will possibly help us understand the nature of dark energy.

The SuperNova Legacy Survey is an international collaboration involving about 40 researchers, that aims to discover several hundred far supernovae and mesure their distance. The team’s first results will be published in a coming issue of Astronomy & Astrophysics.

The SuperNova Legacy Survey is the largest observational project of its kind. It started in 2003 and will last for five years. So far, the team has measured the distance to 71 supernovae that exploded between 2 and 8 billion years ago. Many of the largest telescopes worldwide are involved in this project; the imaging part of the programme is carried out at the Canada-France-Hawaii Telescope (CFHT), in the framework of the CFHT Legacy Survey. Spectroscopic observations are obtained at the ESO/Very Large Telescope , the Gemini and Keck observatories.



Measuring the distance to faraway supernovae is a key tool for cosmologists. Supernovae are exploding stars, known to have similar brightnesses whatever their location in other galaxies. Observing these exploding stars can thus make it possible to measure their distances: they are known as “standard candles” for measuring long distances in the Universe.

Measurement of these distances revealed a startling phenomenon; in the late 1990s, astronomers found that the expansion of the Universe is accelerating. This expansion was first discovered in 1929 by American astronomer Edwin Hubble. The expansion of the Universe was thought to be slowing down because of the gravitational attraction of matter. Astronomers were thus very surprised to discover this was not the case at all. Theorists then attempted to explain the acceleration of expansion through various cosmological models. These models all involved the so-called “dark energy” concept, which is a kind of repulsive force against gravitational attraction. Nobody knows what dark energy is, but we can make an attempt to understand how it behaves.

In recent years, cosmological observations have supported that the Universe is made of about 25 % of matter and 75 % of dark energy. Unlike matter, which dilutes with expansion, dark energy appears to stay roughly constant. The new results, to be published by the SuperNova Legacy Survey team, put strong constraints on the absence of dilution of dark energy. Such a kind of dark energy was already foreseen by Einstein himself when he introduced the famous “cosmological constant” into his General Relativity equations. Such a constant was needed for the equations to be consistent with a static universe, as it was believed to be at that time. When the Universe was discovered to be expanding, it seemed that the cosmological constant was no longer needed in the equations. Later, Einstein refered to it as his “greatest blunder”. The discovery of the accelerating Universe expansion suggested the need for a cosmological constant that might, among other models, explain the acceleration of the expansion. The first results of the Legacy Survey indeed show that the existence of a cosmological constant is the best way to fit their observations. Once completed, by the end of 2008, their Survey will bring even more restrictive constraints to these cosmological models. It will help us better understand the physical nature of this cosmological constant: 80 years later, “Einstein’s greatest blunder” is perhaps less of a blunder after all.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org/journal/index.cfm?edpsname=aa&niv1=others&niv2=press_release&niv3=PRaa200512

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>