Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integral reveals new class of ‘supergiant’ X-ray binary stars

17.11.2005


Interaction between compact stellar object and wind of a supergiant


ESA’s Integral gamma-ray observatory has discovered a new, highly populated class of X-ray fast ‘transient’ binary stars, undetected in previous observations.

With this discovery, Integral confirms how much it is contributing to revealing a whole hidden Universe.

The new class of double star systems is characterised by a very compact object that produces highly energetic, recurrent and fast-growing X-ray outbursts, and a very luminous ‘supergiant’ companion.



The compact object can be an accreting body such as a black hole, a neutron star or a pulsar. Scientists have called such class of objects ‘supergiant fast X-ray transients’. ‘Transients’ are systems which display periods of enhanced X-ray emission.

Before the launch of Integral, only a dozen X-ray binary stars containing supergiants had been detected. Actually, scientists thought that such high-mass X-ray systems were very rare, assuming that only a few of them would exist at once since stars in supergiant phase have a very short lifetime.

However, Integral’s data combined with other X-ray satellite observations indicate that transient supergiant X-ray binary systems are probably much more abundant in our Galaxy than previously thought.

In particular, Integral is showing that such ‘supergiant fast X-ray transients’, characterised by fast outbursts and supergiant companions, form a wide class that lies hidden throughout the Galaxy.

Due to the transitory nature, in most cases these systems were not detected by other observatories because they lacked the combination of sensitivity, continuous coverage and wide field of view of Integral.

They show short outbursts with very fast rising times – reaching the peak of the flare in only a few tens of minutes – and typically lasting a few hours only. This makes the main difference with most other observed transient X-ray binary systems, which display longer outbursts, lasting typically a few weeks up to months.

In the latter case, the long duration of the outburst is consistent with a ‘viscous’ mass exchange between the star and an accreting compact object.

In ‘supergiant fast X-ray transients’, associated with highly luminous supergiant stars, the short duration of the outburst seems to point to a different and peculiar mass exchange mechanism between the two bodies.

This may have something to do with the way the strong radiative winds, typical of highly massive stars, feed the compact object with stellar material.

Scientists are now thinking about the reasons for such short outbursts. It could be due to the supergiant donor ejecting material in a non-continuous way. For example, a clumpy and intrinsically variable nature of a supergiant’s radiative winds may give rise to sudden episodes of increased accretion rate, leading to the fast X-ray flares.

Alternatively, the flow of material transported by the wind may become, for reasons not very well understood, very turbulent and irregular when falling into the enormous gravitational potential of the compact object.

“In any case, we are pretty confident that the fast outbursts are associated to the mass transfer mode from the supergiant star to the compact object,” says Ignacio Negueruela, lead author of the results, from the University of Alicante, Spain.

“We believe that the short outbursts cannot be related to the nature of the compact companion, as we observed fast outbursts in cases where the compact objects were very different - black holes, slow X-ray pulsars or fast X-ray pulsars.”

Studying sources such as ‘supergiant fast X-ray transients’, and understanding the reasons for their behaviour, is very important to increase our knowledge of accretion processes of compact stellar objects. Furthermore, it is providing valuable insight into the evolution paths that lead to the formation of high-mass X-ray binary systems.

Chris Winkler | EurekAlert!
Further information:
http://www.esa.int/esaSC/SEM20VJBWFE_index_0.html

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>