Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovative nanomaterials processing points to advances in semiconductor optoelectronics


Electron diffraction pattern of PbS nanoparticles in zeolite X

Optical and structural properties of PbS nanoparticles produced in Zeolite Na-X

The study of semiconductor nanoparticles embedded in a matrix is currently a very active research area. These small particles have physicochemical properties quite different from those in the bulk material. A great variety of semiconductors nanoparticles have been synthesized in different matrix such as polymers, glasses and zeolites with the main purpose to modify their properties by controlling the particle size. Alterations to these properties mean they can be tailored to specific applications in the fields of non-linear optics, photovoltaic conversion, catalysis, optoelectronics, etc.

In this work, published in AZojomo*, by M. Flores-Acosta, R. Pérez-Salas, M. Sotelo-Lerma, F. F. Castillón-Barraza and R. Ramírez-Bon from Unidad Querétaro, Universidad de Sonora and Universidad Nacional Autónoma de México, PbS nanoparticles were synthesized in zeolite Na-X by means of ionic exchange processes in alkaline aqueous solutions. They reported the optical and structural properties of the system PbS-Na-X zeolite.

The 4.0nm PbS nanoparticles have spherical shape, the crystalline structure of galena and are embedded uniformly in the zeolite matrix. The 1se-1ph and 1pe-1ph excitonic transitions observed in the absorption spectra of the PbS-Na-X system is explained in terms of the crystalline quality of the PbS nanoparticles.

The results show that spherical PbS nanoparticles are formed not inside the zeolite cages but outside, embedded in the zeolite matrix. The absorption spectra of the samples display exciton absorption bands at much higher energy than the fundamental absorption edge of bulk PbS. This result is a consequence of strong quantum confinement effects produced by the reduced size of the PbS nanoparticles as compared to the exciton Bohr diameter of bulk PbS.

Dr. Ian Birkby | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>