Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter’s massive winds likely generated from deep inside its interior, scientists report

14.11.2005


A new computer model indicates Jupiter’s massive winds are generated from deep within the giant planet’s interior, a UCLA scientist and international colleagues report today in the journal Nature.



Jupiter’s powerful winds are very different from those on Earth. They continually circle the planet, and have changed very little in the 300 years that scientists have studied them. Massive east-west winds in Jupiter’s equatorial region reach approximately 340 miles per hour -- twice as rapid as winds generated by strong hurricanes on Earth. At higher latitudes, the wind pattern switches to alternating jets that race around the planet.

No one has been able to explain why the winds are so constant or what generates them -- but that may change.


"Our model suggests convection driven by deep internal heat sources power Jupiter’s surface winds," said Jonathan Aurnou, UCLA assistant professor of planetary physics. "The model provides a possible answer to why the winds are so stable for centuries. Jupiter’s surface is the tail; the dog is the hot interior of the planet.

"On Earth," Aurnou said, "we get strong changes in wind patterns every season. On Jupiter, there is almost no variation. There are changing cloud structures, but the large-scale winds remain essentially constant."

The researchers identified key ingredients that explain Jupiter’s "super winds" and factored those into their model. Aurnou’s colleagues are Moritz Heimpel, assistant professor of physics at the University of Alberta in Edmonton, and Johannes Wicht at the Max Planck Institute for Solar System Research in Germany.

Aurnou, Heimpel and Wicht created the first three-dimensional computer model that generates both a large eastward equatorial jet and smaller alternating jets at higher latitudes. In a rapidly rotating shell of fluid, they modeled thermally driven convection, which is what drives motion in a boiling pot.

"Three critical ingredients are the correct geometry, turbulent convection and rapid rotation, and our model contains all three elements," said Aurnou, a faculty member in UCLA’s Department of Earth and Space Sciences. "When you include all those, that gives us the right recipe. In the future, we’ll refine our model by adding even more ingredients."

Jupiter’s radius is more than 11 times the radius of Earth. A tremendous amount of heat comes from the interior.

"The heat from Jupiter’s interior is comparable to the heat the planet receives from the sun," Aurnou said.

The model suggests three-dimensional convection in Jupiter’s deep atmosphere is likely driving the zonal flows, Aurnou said.

Jupiter’s interior is made primarily of compressed hydrogen and helium, and a giant plasma.

Aurnou will continue to study Jupiter’s strong winds, as well as those on Saturn, Uranus and Neptune.

Stuart Wolpert | EurekAlert!
Further information:
http://www.college.ucla.edu

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>