Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists show coherence of Bose-Einstein condensates extends to spin state of atoms

11.11.2005


New research shows that the unique properties of atomic Bose-Einstein condensates extend to the internal spin states of the atoms from which the condensates are formed. Bose-Einstein condensates are an unusual form of matter in which all atoms exist in the same quantum state.


Graphic represents how the population of rubidium atoms changed over time. Lower row shows the starting state, which contained only atoms with 0 and -1 spin states.



Beyond fundamental physics interest, the work could provide a foundation for future research with potential implications for quantum information systems.

Bose-Einstein condensates are formed by cooling gas atoms to a fraction of a degree above absolute zero. At that temperature, the atoms all drop into the same quantum state. That makes them coherent, all possessing the same quantum wave function, a state comparable to that of photons in laser systems.


In a paper published in the November issue of the journal Nature Physics, researchers at the Georgia Institute of Technology reported experimental evidence that this coherence also extends to the internal spin degrees of freedom in condensate atoms, which in this case had three different spin states, denoted by 1, 0 and -1.

"The question had been whether the coherence of Bose-Einstein condensates extended to what was going on in the internal states of the atoms," explained Michael Chapman, a professor in Georgia Tech’s School of Physics. "The major message of our work is that it does. We have seen manifestation that this Bose-Einstein coherence extends to the spin degrees of freedom. This gives us a much richer system to study."

The research was sponsored by the National Science Foundation and NASA.

Coherence in condensate spin states had been predicted theoretically, and research teams – including Chapman’s – had been seeking experimental confirmation. While the results have no immediate practical applications, they provide a foundation for future experiments that could ultimately have important real-world uses.

Chapman plans to use the experimental system to study how relatively small condensates – those containing between 10 and 100 atoms – interact in a quantum way. Researchers understand the quantum behavior of small numbers of atoms, while semi-classical physics explains how large atomic ensembles work. Chapman wants to learn about the behavior of atomic groups in between those two size extremes.

"We are really interested in this regime in which quantum yields to classical," he explained. "The interest is similar to that of nanotechnology because we’re asking the same basic questions. It’s fundamentally interesting because while we can write down the exact quantum solution for one or a few atoms and the semi-classical approximations for a large group of atoms, we can’t specify what will happen for this in-between region."

Chapman also hopes the small-scale condensate systems will be useful to understanding the atomic analogue of quantum optics or quantum atom optics, where physicists are interested in the behavior of just a few atoms. In condensates containing a million atoms, adding or removing one atom doesn’t make a difference. But in groups containing only a hundred or so atoms, theory suggests that adding or removing one atom would make a substantial difference to the properties of the condensate.

Chapman notes that internal spin degrees of freedom can exhibit quantum entanglement in a phenomenon known as "spin squeezing." Understanding that effect in Bose Einstein condensates could be useful to researchers studying quantum information systems and quantum computing.

"Quantum entanglement is the bread-and-butter of quantum information and quantum computing," he said. "From the first time that people realized you could make a condensate that has spin degrees of freedom, people knew that would be interesting because if it really behaves this way, we could use this entanglement to make systems that might have applications to quantum information."

Experimentally, Chapman’s research team – which included Ming-Shien Chang and Qishu Qin along with theoretical collaborators Wenxian Zhang and Li You – began with hundreds of millions of atoms of rubidium gas in a magneto-optical atomic trap that was overlapped with an optical trap. From this large number, they loaded a smaller group of atoms into the optical trap.

By applying magnetic fields to condensates created in the optical trap, they created condensates in different spin states and chose rubidium atoms with a -1 spin state to begin the experiment. Into that group, they injected microwave energy, which caused some of the atoms to transition from their original state to a spin 0 state. They then observed as atoms in the condensate collided with one another.

Some – but not all – collisions produced a change in state among the atoms. For instance, when two spin -1 atoms collide, their spin orientations remain unchanged because angular momentum must be conserved. However, when two spin 0 atoms collide, the result can be one spin -1 and one spin +1 atom. Over time, these collisions created quantities of the third spin state (+1) that did not exist in at the start of the experiment.

"We created a spin state that didn’t exist in the original form," Chapman said. "That spin state was created by the other spin states that were coherently interactive in the condensate."

The researchers periodically turned off the atomic trap and applied a magnetic field gradient that pulled apart the different spin states, allowing measurement of the number of atoms at each spin state. With that information, the researchers charted spin-state population fluctuations through as many as a dozen oscillations.

The dynamics the researchers observed are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. Beyond the evidence of coherent interaction between the atoms, the research demonstrated the ability to control the evolution of the rubidium system by magnetically applying differential phase shifts to the spin states, Chapman noted.

John Toon | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>