Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Messengers from the Extreme Universe

11.11.2005


A unique observatory in a remote location in Argentina is starting to unravel the mysteries of High Energy Cosmic Rays. There is no scientific consensus on the source of these particles which the shower the Earth at energies 10 million times higher than can be produced in particle accelerators! But the Pierre Auger Observatory is shedding new light on these energetic particles from space and using them as messengers to tell us more about the wider Universe.



Scientists of the Pierre Auger Observatory will hold a celebration in Malargüe, Argentina, from 9 November to 11 November 2005, to mark the progress of the Observatory and the presentation of the first physics results.

To witness these extremely rare events, the observatory is constructing an array of 1600 detectors spread over 3000 square kilometres (an area roughly the size of Cambridgeshire in the UK) in Argentina’s Mendoza Province, just east of the Andes Mountains. Each of these “Cherenkov” detectors contains 3000 gallons of water and detects the electromagnetic ‘shock waves’ as the particles pass through. Surrounding the array is a set of 24 telescopes which, on clear moonless nights, observe the ultraviolet fluorescence light produced as cosmic ray shower particles travel through the atmosphere.


"These highest-energy cosmic rays are messengers from the extreme universe," said Nobel Prize winner Jim Cronin, of the University of Chicago, who conceived the Auger experiment together with Alan Watson of the University of Leeds. "They represent a great opportunity for discoveries."

Watson added: "How does nature create the conditions to accelerate a tiny particle to such an energy? Tracking these ultrahigh-energy particles back to their sources will answer that question."

The observatory has been collecting data since the first parts of the array were completed. The first physics results from the Pierre Auger Observatory include a new cosmic ray spectrum at the highest energies, the results of anisotropy and point source searches, and new limits on the photon content of the primaries that address a number of theories about exotic theories of cosmic ray origin.

The significance of the results:

• The Observatory charts a spectrum by measuring the observed cosmic rays as a function of energy. As the energy of the cosmic rays increases, the experiment is seeing fewer and fewer of them. Auger observes cosmic rays at energies as high as any other experiment has ever seen, if not higher, examining this high energy range for interesting phenomena -- which might or might not exist.

• Cosmic rays generally are charged particles. Lower-energy rays are greatly affected by galactic magnetic fields, taking twisted and distorted paths to earth. High-energy rays, less affected by magnetic fields, take a more direct path to Earth. If experimenters see more rays from one direction than from another (anisotropy), they can refine their observations to include point source searches, tracking back fairly closely to a point source or an object in the sky.

• Scientists want to know the makeup of the primaries, the cosmic ray particles that initially strike the Earth’s atmosphere, creating further collisions with air molecules that eventually produce a cascade of particles called an extensive air shower. Is the primary a proton, an atomic nucleus, or a photon? Researchers have determined experimentally that the makeup of primaries cannot exceed a specific fraction (a limit) of photons, which will eventually affect their thinking on some exotic theories of cosmic ray origins.

• These exotic theories include hypothetical objects left over from the Big Bang, called topological defects, such as "cosmic strings," "domain walls," and "monopoles." If these hypothetical phenomena existed, and then collapsed, their collapses could produce enough energy to create very high-energy cosmic rays. If so, then a certain fraction of cosmic rays would consist of photons. So far, the data is not extensive enough to prove or disprove any of these phenomena. But enlarging the data set over time will help Auger scientists narrow down the many different theories of cosmic ray origin.

"Once more science stands at the threshold of resolving a fundamental question that has so far eluded mankind - the source of high energy cosmic rays,” the Chief Executive of the UK’s Particle Physics and Astronomy Research Council [PPARC], Prof. Keith Mason. “And I look forward with great interest to Auger’s quest to unravel one of Nature’s most intriguing mysteries."

Commenting on the experiment’s progress, Prof. Keith Mason added: "The Pierre Auger Observatory is a remarkable example of international collaboration and I am particularly proud that the UK was involved at its inception and that our scientists continue to play a key role in this project."

While a northern hemisphere site has not yet been funded, the collaboration is working to establish a northern hemisphere partner of the southern observatory, likely to be based in southeastern Colorado in the US. With observatories in both hemispheres, the Auger collaboration will have the opportunity to view the entire universe from every direction.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/auger_celebration.asp

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>