Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organised wind chaos on Jupiter

10.11.2005


An international team of researchers, using new computer simulations

Scientists from the Max-Planck Institute for Solar System Research, the University of Alberta in Edmonton, Canada, and the University of California Los Angeles, have now presented a new three-dimensional computer model that successfully describes and explains all important characteristics of the banded flows on Jupiter. The simulations suggest that the wind system may reach as deep as 7000 km into the planet’s atmosphere.

Driving forces are smaller, turbulent flows that are organised into the banded form by the planet’s curvature and rotation. The computer model also explains why there are two jet classes: strong and wide jets near the equator, but narrow and weak wind belts at higher latitudes. The reason is hidden deep in planet, where immense pressures cause the atmosphere to take on a metallic state. (Nature, November 10, 2005)



Jupiter, the largest planet of our solar system, offers a fascinating view. A number of Bands of different coloured clouds seem to embrace the planet like belts. These bands mirror a system of extremely strong and stable jet winds, blowing both in easterly and westerly directions. Comparisons between the measurements of the VOYAGER mission in 1979 and the recent CASSINI spacecraft show that the system remained nearly unchanged. The winds alternate direction in accordance with the clouds: they blow eastward on the equator-facing side of the dark belts, and westward on the pole-facing side. The strongest jet is centred on the equator and blows with a speed of up to 170 meter per second in easterly direction. The jets can be separated into two classes. Stronger, broader winds are grouped around the equator while the jets are higher latitudes are generally weaker and narrower.

The team of researchers from Germany, Canada, and the USA has presented the first computer simulation that models all important characteristics of Jupiter’s wind system and explains its origin. Two groups of models for the dynamics of Jupiter’s atmosphere can be distinguished: shallow and deep models. Supporters of the shallow approach apply techniques developed in meteorology on Earth to Jupiter’s atmosphere. Because the Earth’s atmosphere is very thin compared to the planet’s radius, its spherical form can be approximate with a simplified layer, which allows the computer simulations to run considerably faster. The respective models successfully produce several banded winds but fail otherwise: The equatorial jet, the strongest on Jupiter, blows in the wrong direction, and the distinction into the two classes is missing, all jets are similar.

In the 1970s Friedrich Busse, Professor Emeritus at the University of Bayreuth, Germany, developed the first deep dynamical model . He pointed out that there is an important difference between Jupiter’s and Earth’s atmospheres: Earth’s atmosphere is bounded by the planets rocky surface. Jupiter, on the other hand, is a gaseous planet. There simply is no bottom that could restrict the winds to a thin layer.

Jupiter’s atmosphere mainly consists of hydrogen and helium. The atmospheric pressure increases with depth. At some point, the hydrogen molecules are pressed so close together that they form a metallic, electrically conductive state. Jupiter’s strong magnetic field prevents any faster movement in the electrically conductive deeper regions by a mechanism that also works in an eddy current brake. This limits the fast jet flows to the outer 10 percent of the planet’s radius.

Based on the ideas by Friedrich Busse, the new computer models the dynamics of this outer layer which still comprises 7000 km in depth. The computer program has been developed by Johannes Wicht at the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany, and simulates the convection-driven fluid flow in a rotating spherical shell. The results offer a novel insight into how and why Jupiter’s wind system has developed.

On earth, weather dynamics is driven by the heat coming from the sun. On Jupiter, however, heat emerging from inside the planet plays a larger role. This powerful energy source primarily drives small-scale turbulent convective motion. But the dynamics of fluids in rotating systems – like planets – exhibit some particular characteristics: these systems prefer flows which do not change along the axis of rotation. Convective motions, like tornadoes on earth, therefore try to organise themselves into cylinder-shaped columns. The cylindrical geometry is in conflict with the spherical shape of the planet.

The spherical curvature hardly affects smaller, turbulent vortex structures. There is, however, a particular vortex size where its influence becomes as important as the convective forcing. This theoretically-derived size is known as the Rhines length, after Peter B Rhines, a professor at the University of Washington, Seattle. When a vortex diameter reaches the Rhines length, the planet’s curvature starts to organize the convective kinetic energy into the jet winds. The Rhines length therefore determines not only the width but also the number of jets that fill the planetary surface.

But why are there two different classes of jets? The computer models also provide insight into this question, and confirm the theoretical principle also proposed in the article in Nature. Jet winds around the equator reach right through the planet spanning northern as well as southern hemisphere. This is not possible at higher latitudes where the winds are in contact with the electrically conductive gas region. Here, the stronger curvature of the inner boundary helps to organize the turbulent convection. When incorporating this effect into a redefined Rhines length theory, simulation, and observation all agree: these jets are narrower than, and belong to a different class as, those around the equator.

Dr Johannes Wicht | EurekAlert!
Further information:
http://www.linmpi.mpg.de

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>