Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT closes in on bionic speed

09.11.2005


See caption below


See caption below


Theory could result in faster artificial muscles

Robots, both large and micro, can potentially go wherever it’s too hot, cold, dangerous, small or remote for people to perform any number of important tasks, from repairing leaking water mains to stitching blood vessels together.

Now MIT researchers, led by Professor Sidney Yip, have proposed a new theory that might eliminate one obstacle to those goals - the limited speed and control of the "artificial muscles" that perform such tasks. Currently, robotic muscles move 100 times slower than ours. But engineers using the Yip lab’s new theory could boost those speeds - making robotic muscles 1,000 times faster than human muscles - with virtually no extra energy demands and the added bonus of a simpler design. This study appears in the Nov. 4 issue of the journal Physical Review Letters.



In this case, a robotic muscle refers to a device that can be activated to perform a task, like a sprinkler activated by pulling a fire alarm lever, explains Yip, a professor of nuclear engineering and materials science and engineering.

In the past few years, engineers have made the artificial muscles that actuate, or drive, robotic devices from conjugated polymers. "Conjugated polymers are also called conducting polymers because they can carry an electric current, just like a metal wire," says Xi Lin, a postdoctoral associate in Yip’s lab. (Conventional polymers like rubber and plastic are insulators and do not conduct electricity.)

Conjugated polymers can actuate on command if charges can be sent to specific locations in the polymer chain in the form of "solitons" (charge density waves). A soliton, short for solitary wave, is "like an ocean wave that can travel long distances without breaking up," Yip adds. (See figures.) Solitons are highly mobile charge carriers that exist because of the special nature (the one-dimensional chain character) of the polymer.

Scientists already knew that solitons enabled the conducting polymers to conduct electricity. Lin’s work attempts to explain how these materials can activate devices. This study is useful because until now, scientists, hampered by not knowing the mechanism, have been making conducting polymers in a roundabout way, by bathing (doping) the materials with ions that expand the volume of the polymer. That expansion was thought to give the polymers their strength, but it also makes them heavy and slow.

Lin discovered that adding the ions is unnecessary, because theoretically, shining a light of a particular frequency on the conducting polymer can activate the soliton. Without the extra weight of the added ions, the polymers could bend and flex much more quickly. And that rapid-fire motion gives rise to the high-speed actuation, that is, the ability to activate a device.

To arrive at these conclusions, Lin worked from fundamental principles to understand the physical mechanisms governing conjugated polymers, rather than using experimental data to develop hypotheses about how they worked. He started with Schrödinger’s equation, a hallmark of quantum mechanics that describes how a single electron behaves (its wave function). But solving the problem of how a long chain of electrons behaves was another matter, requiring long and complex analyses.

This research was funded by Honda R&D Co. and the Defense Advanced Research Projects Agency/Office of Naval Research. Yip and Lin’s collaborators on the work are Professor Ju Li at Ohio State University and Professor Elisabeth Smela at the University of Maryland.

In Figure 1, a soliton (blob with red and blue stripes) moves along a conducting polymer chain (aqua and yellow for hydrogen and carbon). The soliton blob causes a localized bend in the chain. The traditional way to make polymer actuate is to dope the material with an ion such as sodium, represented by the red dot. New MIT research has suggested another way, shown in figure 2, is to shine light of a specific frequency (h‡), on the conducting polymer. The polymer in figure 2 is a chain (neutral charge, green) that is naturally curved before exposure. The effect of light (h‡ frequency) is to create positive charges (red) in a localized area. The positive charges enhance the chemical bonding between the polymer’s units and straighten out the curved chain in that area. (This straightening occurs where the red and blue striped lobe appeared in Figure 1. The lobe can move along the polymer chain rapidly.) Figures courtesy Yip lab, MIT

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>