Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tool tackles translucence and other color challenges


Plain old colors are passé. Complex visual effects, such as pearlescence, translucence, iridescence and glitter, help sell many products, including cars, cosmetics, pharmaceuticals and military hardware. A new instrument at the National Institute of Standards and Technology (NIST) makes comprehensive measurements of such appearance properties to help companies calibrate their own tools and control product quality.

The NIST goniospectrometer measures the intensity of light reflected from the surface of a sample at 332 points. A plot of these measurements results in a different shape depending on whether the illumination comes from above (top) or at a 60-degree angle (bottom).

Exotic surfaces and coatings may look different depending on illumination or viewing angles, subtleties that cannot be accounted for by traditional characterization methods. Many consumers are familiar with automobile paints that appear to change color with viewing direction. The new NIST device, called a goniospectrometer, automatically measures the color of light reflected from a surface as well as its dependence on the directions of illumination and observation. The device is described in a recent publication.*

NIST already offers a heavily used calibration service making less sophisticated measurements with another instrument. The new goniospectrometer will provide more complete data on the reflection of light from a color surface, and will be used for calibrating similar instruments and for research on exotic-appearing materials and coatings. NIST scientists also hope to create a database of measurements of different materials that could be used for modeling surfaces that have complex visual effects. The work is part of a NIST effort to develop accurate measurement methods for reproduction and quality control of appearance attributes, including color matching, by determining the minimum set of illumination and viewing geometries needed to accurately characterize the perceived color.

The goniospectrometer, housed in a clean room, illuminates a sample with a range of wavelengths of visible light, every 5 nanometers (nm) from 360 nm to 780 nm, i.e. from the near ultraviolet/deep blue to red/infrared. The sample and detector are rotated around three axes, allowing illumination and viewing in any direction within a hemisphere around the sample (see graphic). The intensity of the reflected beam is measured at several hundred locations on a sample surface. Based on these measurements, computer software assigns a numerical value to the color of the reflected light.

Laura Ost | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>