Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale scientists confirm how crystals form

04.11.2005


A team of researchers at Yale University is the first to devise a way to predict the microstructure of crystals as they form in materials, according to a report in the September issue of Applied Physics Letters.



Although there are theoretical models that predict grain size and ways to monitor the growth of individual crystals, this new method makes it possible to estimate grain size and therefore the properties of materials that are dependant on microstructure.

Researchers in many fields including materials science, geology, physical chemistry and biochemistry will now be able to tailor material properties that are sensitive to microstructure.


According to senior author Ainissa G. Ramirez, assistant professor of mechanical engineering, the Yale team monitored real-time images taken at two-second intervals while they heated crystallizing samples of nickel-titanium within a transmission electron microscope.

They directly determined the rate of crystal assembly (nucleation), and the rate that the crystals grew, by measuring the number of crystals and their change in size with time. Their results agree with the conventional Johnson-Mehl-Avrami-Kolmogorov method which only gives an overall crystallization rate, with the nucleation and growth rates coupled.

The novel contribution of this work is that the nucleation and growth rates are measured independently during crystallization and can be used to infer the grain size after crystallization is complete.

"We used the mathematics of crystallization in a new way," said Ramirez. "We found that our measured grain sizes and the mathematical predictions agreed over a broad range of temperatures. This method allows researchers to now explore the connection between structure and properties of different materials."

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>