Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Spring - Moscow Scientist Invents Unusual Water Purification Filter

04.11.2005


Pores never become clogged in this filter – because there are no pores at all. The filter is designed in a different way.



The device invented by V.B. Krapukhin, Ph. D. (Engineering) was shown for the first time at the recent “Chemistry-2005” exhibition in Moscow where constantly crowded near the exhibition booth. The most heard comment was “simple like everything ingenious”.

The water purification filter looks as follows:


There is a tank containing troubled, evidently dirty water, and another tank – containing clean, filtered water. Between them, there is a transparent either plastic or glass cylinder, inside which there a sort of stick covered by dense dark grey thin coating. Naturally there are also communication pipes, pumps, manometers. Suddenly, after some manipulation by the author demonstrating his invention, purified water stops running into the tank, grey coating gets troubled, unattractive content of the cartridge runs out backwards – into the tank with dirty water. A a shining spring is revealed inside, the zest of invention, its kernel.

How does this work?

In the operating position spring coils are pressed together tightly. Water gets into the cartridge under pressure and, having gone through the filter-spring, runs out already purified from dirt. Particulate pollutants larger than a micron remain in the cartridge. They are unable to squeeze through the spring coils. This is it, as simple as that.

“Normally, after several filtration-regeneration cycles were performed, pores of known filter mediums, such as cardboards, fabrics and others got irreversibly plugged up with solid phase particles." explains V.B. That is why in the long run filter elements have to be extracted and replaced with new ones. Filter materials turned into waste, which, in case of toxic or radioactive contamination, had to be reclaim or buried. New filters had to be bought, consuming time and money which is not superfluous.

Apparently, the new filter element is free from such disadvantages – due to the lack of source of disadvantages, i.e. removable filters. Simple flushing within several minutes puts the spring back to operating condition. The filter design is quite multi-purpose – this method is suitable for purification of various liquid and gas currents. The number of filtration-regeneration cycles may be practically endless.

However, the device is not universal. For example, it does not provide for chemical purification of water. It performs mechanical purification from impurity substances, their size exceeding a micron. So, the device will clean water from silt, for example, but certainly not from salts of hardness. If soluble compounds should be filtered off, this has to be done additionally. However, this is how it is commonly done. But there will be no need to change filters endlessly, or to live in constant fear that the current of dirt would clog the pores up, due to that the process would go wrong – unfortunately, this happens quite often with ususal filters. This is absolutely impossible in case of Krapukhin’s filters, which can be cleaned and returned back to operating condition in no time. They are indeed cheap but good.

The filter element of the device has been developed by V.B. Krapukhin and his colleagues at the Institute of Physical Chemistry(Russian Academy of Sciences). The scientist work at the laboratory of physicochemical methods for radioactive elements localization.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>