Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightning research sparks new discovery

02.11.2005


Bringing the study of lightning research into the laboratory

Lightning, a high-voltage discharge that strikes quickly and sometimes fatally, is very difficult to study. A new and surprising finding by Florida Institute of Technology’s Dr. Joseph Dwyer and his team brings the study of lightning research into the laboratory.
Already noted for his discoveries related to x-ray emission from natural and triggered lightning, Dwyer, an associate professor of physics and space sciences, conducted a related experiment recently. He was shocked to find that laboratory-generated sparks make x-rays, too.


"We know that x-rays are made in outer space--in exotic places like the center of the sun and supernovae--but we didn’t think they could be made so easily in the air," said Dwyer. "The results should allow for the detailed laboratory study of runaway breakdown, a mechanism that may play a role in thunderstorm electrification, lightning initiation and propagation, and terrestrial gamma-ray flashes."

High voltage sparks are a ubiquitous phenomenon in nature. They occur in a wide range of settings, from a finger touching a doorknob to the massive lightning flashes on Jupiter. Until Dwyer’s discovery, it was believed that such electrical discharges involved only low-energy electrons, not the kind of high-energy electrons that make x-rays.

To conduct their recent experiment, Dwyer and his team; Florida Tech professor of physics and space sciences, Dr. Hamid Rassoul; Florida Tech graduate student Zaid Saleh and University of Florida graduate student Jason Jerauld, brought the instruments they had used to study lightning in Florida to Lightning Technologies Inc., in Pittsfield, Mass. They set up the equipment next to a Marx spark generator just to see what would happen. Half the team guessed they would see x-rays, half did not.

What they found was that 14 tests of 1.5- 2.0 million-volt sparks in the air produced x-ray bursts. The bursts were remarkably similar to the x-ray bursts previously observed from lightning.

"This amazed us. It opens the door to answering really big questions about lightning by generating it in the lab," said Rassoul. "It also tells us that we have a lot to learn about how even small sparks work."

Dwyer is excited about the opportunity to study the poorly understood phenomenon of runaway breakdown--shown to be associated with lightning--in the lab. To date, the only mechanism that can account for the creation of the high-energy electrons that make x-rays is the runaway breakdown of air. In this phenomenon, the electric force experienced by electrons exceeds the effective frictional force due to collisions with air molecules, allowing the electrons to "run away" and gain very large energies.

The new finding, published in October in Geophysical Research Letters, will also be discussed on Nature online, the first week of November.

Dwyer’s previous breakthrough findings have earned extensive media exposure, including a recent PBS NOVA ScienceNow program. His work also will be on upcoming Discovery andNational Geographic Channel TV programs.

Karen Rhine | EurekAlert!
Further information:
http://www.fit.edu

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>