Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightning research sparks new discovery

02.11.2005


Bringing the study of lightning research into the laboratory

Lightning, a high-voltage discharge that strikes quickly and sometimes fatally, is very difficult to study. A new and surprising finding by Florida Institute of Technology’s Dr. Joseph Dwyer and his team brings the study of lightning research into the laboratory.
Already noted for his discoveries related to x-ray emission from natural and triggered lightning, Dwyer, an associate professor of physics and space sciences, conducted a related experiment recently. He was shocked to find that laboratory-generated sparks make x-rays, too.


"We know that x-rays are made in outer space--in exotic places like the center of the sun and supernovae--but we didn’t think they could be made so easily in the air," said Dwyer. "The results should allow for the detailed laboratory study of runaway breakdown, a mechanism that may play a role in thunderstorm electrification, lightning initiation and propagation, and terrestrial gamma-ray flashes."

High voltage sparks are a ubiquitous phenomenon in nature. They occur in a wide range of settings, from a finger touching a doorknob to the massive lightning flashes on Jupiter. Until Dwyer’s discovery, it was believed that such electrical discharges involved only low-energy electrons, not the kind of high-energy electrons that make x-rays.

To conduct their recent experiment, Dwyer and his team; Florida Tech professor of physics and space sciences, Dr. Hamid Rassoul; Florida Tech graduate student Zaid Saleh and University of Florida graduate student Jason Jerauld, brought the instruments they had used to study lightning in Florida to Lightning Technologies Inc., in Pittsfield, Mass. They set up the equipment next to a Marx spark generator just to see what would happen. Half the team guessed they would see x-rays, half did not.

What they found was that 14 tests of 1.5- 2.0 million-volt sparks in the air produced x-ray bursts. The bursts were remarkably similar to the x-ray bursts previously observed from lightning.

"This amazed us. It opens the door to answering really big questions about lightning by generating it in the lab," said Rassoul. "It also tells us that we have a lot to learn about how even small sparks work."

Dwyer is excited about the opportunity to study the poorly understood phenomenon of runaway breakdown--shown to be associated with lightning--in the lab. To date, the only mechanism that can account for the creation of the high-energy electrons that make x-rays is the runaway breakdown of air. In this phenomenon, the electric force experienced by electrons exceeds the effective frictional force due to collisions with air molecules, allowing the electrons to "run away" and gain very large energies.

The new finding, published in October in Geophysical Research Letters, will also be discussed on Nature online, the first week of November.

Dwyer’s previous breakthrough findings have earned extensive media exposure, including a recent PBS NOVA ScienceNow program. His work also will be on upcoming Discovery andNational Geographic Channel TV programs.

Karen Rhine | EurekAlert!
Further information:
http://www.fit.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>