Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lightning research sparks new discovery


Bringing the study of lightning research into the laboratory

Lightning, a high-voltage discharge that strikes quickly and sometimes fatally, is very difficult to study. A new and surprising finding by Florida Institute of Technology’s Dr. Joseph Dwyer and his team brings the study of lightning research into the laboratory.
Already noted for his discoveries related to x-ray emission from natural and triggered lightning, Dwyer, an associate professor of physics and space sciences, conducted a related experiment recently. He was shocked to find that laboratory-generated sparks make x-rays, too.

"We know that x-rays are made in outer space--in exotic places like the center of the sun and supernovae--but we didn’t think they could be made so easily in the air," said Dwyer. "The results should allow for the detailed laboratory study of runaway breakdown, a mechanism that may play a role in thunderstorm electrification, lightning initiation and propagation, and terrestrial gamma-ray flashes."

High voltage sparks are a ubiquitous phenomenon in nature. They occur in a wide range of settings, from a finger touching a doorknob to the massive lightning flashes on Jupiter. Until Dwyer’s discovery, it was believed that such electrical discharges involved only low-energy electrons, not the kind of high-energy electrons that make x-rays.

To conduct their recent experiment, Dwyer and his team; Florida Tech professor of physics and space sciences, Dr. Hamid Rassoul; Florida Tech graduate student Zaid Saleh and University of Florida graduate student Jason Jerauld, brought the instruments they had used to study lightning in Florida to Lightning Technologies Inc., in Pittsfield, Mass. They set up the equipment next to a Marx spark generator just to see what would happen. Half the team guessed they would see x-rays, half did not.

What they found was that 14 tests of 1.5- 2.0 million-volt sparks in the air produced x-ray bursts. The bursts were remarkably similar to the x-ray bursts previously observed from lightning.

"This amazed us. It opens the door to answering really big questions about lightning by generating it in the lab," said Rassoul. "It also tells us that we have a lot to learn about how even small sparks work."

Dwyer is excited about the opportunity to study the poorly understood phenomenon of runaway breakdown--shown to be associated with lightning--in the lab. To date, the only mechanism that can account for the creation of the high-energy electrons that make x-rays is the runaway breakdown of air. In this phenomenon, the electric force experienced by electrons exceeds the effective frictional force due to collisions with air molecules, allowing the electrons to "run away" and gain very large energies.

The new finding, published in October in Geophysical Research Letters, will also be discussed on Nature online, the first week of November.

Dwyer’s previous breakthrough findings have earned extensive media exposure, including a recent PBS NOVA ScienceNow program. His work also will be on upcoming Discovery andNational Geographic Channel TV programs.

Karen Rhine | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>