Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini finds Prometheus a sculptor of Saturn’s rings

27.10.2005


New findings from members of the Cassini imaging team show that certain prominent features in Saturn’s narrow and contorted F ring can be understood in terms of a simple gravitational interaction with the small moon Prometheus. The results are published in today’s issue of the journal "Nature."



The F ring is notorious for exhibiting unusual structures, like "knots," "kinks," and "clumps" that continue to puzzle astronomers. Cassini images have shown that the gravitational effect of Prometheus appears to produce regular patterns in the ring, including a series of channels or gores in the tenuous ring material interior to the F ring core, and "streamers" of particles that temporarily link the ring to the moon.

Prometheus is only about 100 kilometers (60 miles) wide and orbits just interior to the F ring. The Cassini imaging scientists’ findings show that Prometheus causes the structure as the moon approaches and recedes from the F ring every 14.7 hours, during its orbit of Saturn.


As an example of a satellite that enters a ring on a regular basis, the phenomenon posed unique challenges to the understanding of ring-satellite interactions.

Using Cassini data, the team developed a model that shows the mechanism by which Prometheus, as it recedes from its closest approach to the F ring, gravitationally extracts material from the ring. The affected particles do not escape the F ring region; rather, the changes to their orbits produced by Prometheus cause them to oscillate back and forth across the ring. One orbital period after the encounter, the effect is visible as a dark channel or "gore" in the interior of the F ring, and drape-like structures between the channels – in excellent agreement with Cassini images. In this way, Prometheus leaves its mark on the F ring long after the satellite has moved on.

Dr. Carl Murray from Queen Mary, University of London, lead author of the paper and member of the Cassini Imaging Science Subsystem team said, "As the closer and more massive of the F ring’s two shepherding satellites, Prometheus was always the likely culprit for causing changes to this narrow ring. Our model provides a plausible mechanism for the origin of intricate structures detected in the F ring and suggests that streamers, channels and a variety of other phenomena can all be understood in terms of the simple gravitational effect of a satellite on ring particles."

Over time Prometheus is expected to dive deeper into the F ring – with more extreme perturbations – culminating in December 2009 when the two orbits approach their minimum separation.

Dr. Joseph Burns, an imaging team member from Cornell University, Ithaca, N.Y. and also one of the paper’s co-authors said, "We’re eager to learn what the satellite will do to this narrow, already contorted ring, and in turn whether the ring particles will strike Prometheus, changing its surface."

Murray added, "We see the model we have developed very much as a first step in understanding the processes at work. Ultimately this type of research will help us to understand how planets form and evolve."

The work described in the Nature paper is a collaboration between Cassini imaging scientists at Queen Mary, University of London, Cornell University and the Space Science Institute.

Preston Dyches | EurekAlert!
Further information:
http://www.ciclops.org
http://saturn.jpl.nasa.gov
http://www.nasa.gov/cassini

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>