Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini finds Prometheus a sculptor of Saturn’s rings

27.10.2005


New findings from members of the Cassini imaging team show that certain prominent features in Saturn’s narrow and contorted F ring can be understood in terms of a simple gravitational interaction with the small moon Prometheus. The results are published in today’s issue of the journal "Nature."



The F ring is notorious for exhibiting unusual structures, like "knots," "kinks," and "clumps" that continue to puzzle astronomers. Cassini images have shown that the gravitational effect of Prometheus appears to produce regular patterns in the ring, including a series of channels or gores in the tenuous ring material interior to the F ring core, and "streamers" of particles that temporarily link the ring to the moon.

Prometheus is only about 100 kilometers (60 miles) wide and orbits just interior to the F ring. The Cassini imaging scientists’ findings show that Prometheus causes the structure as the moon approaches and recedes from the F ring every 14.7 hours, during its orbit of Saturn.


As an example of a satellite that enters a ring on a regular basis, the phenomenon posed unique challenges to the understanding of ring-satellite interactions.

Using Cassini data, the team developed a model that shows the mechanism by which Prometheus, as it recedes from its closest approach to the F ring, gravitationally extracts material from the ring. The affected particles do not escape the F ring region; rather, the changes to their orbits produced by Prometheus cause them to oscillate back and forth across the ring. One orbital period after the encounter, the effect is visible as a dark channel or "gore" in the interior of the F ring, and drape-like structures between the channels – in excellent agreement with Cassini images. In this way, Prometheus leaves its mark on the F ring long after the satellite has moved on.

Dr. Carl Murray from Queen Mary, University of London, lead author of the paper and member of the Cassini Imaging Science Subsystem team said, "As the closer and more massive of the F ring’s two shepherding satellites, Prometheus was always the likely culprit for causing changes to this narrow ring. Our model provides a plausible mechanism for the origin of intricate structures detected in the F ring and suggests that streamers, channels and a variety of other phenomena can all be understood in terms of the simple gravitational effect of a satellite on ring particles."

Over time Prometheus is expected to dive deeper into the F ring – with more extreme perturbations – culminating in December 2009 when the two orbits approach their minimum separation.

Dr. Joseph Burns, an imaging team member from Cornell University, Ithaca, N.Y. and also one of the paper’s co-authors said, "We’re eager to learn what the satellite will do to this narrow, already contorted ring, and in turn whether the ring particles will strike Prometheus, changing its surface."

Murray added, "We see the model we have developed very much as a first step in understanding the processes at work. Ultimately this type of research will help us to understand how planets form and evolve."

The work described in the Nature paper is a collaboration between Cassini imaging scientists at Queen Mary, University of London, Cornell University and the Space Science Institute.

Preston Dyches | EurekAlert!
Further information:
http://www.ciclops.org
http://saturn.jpl.nasa.gov
http://www.nasa.gov/cassini

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>