Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cassini finds Prometheus a sculptor of Saturn’s rings


New findings from members of the Cassini imaging team show that certain prominent features in Saturn’s narrow and contorted F ring can be understood in terms of a simple gravitational interaction with the small moon Prometheus. The results are published in today’s issue of the journal "Nature."

The F ring is notorious for exhibiting unusual structures, like "knots," "kinks," and "clumps" that continue to puzzle astronomers. Cassini images have shown that the gravitational effect of Prometheus appears to produce regular patterns in the ring, including a series of channels or gores in the tenuous ring material interior to the F ring core, and "streamers" of particles that temporarily link the ring to the moon.

Prometheus is only about 100 kilometers (60 miles) wide and orbits just interior to the F ring. The Cassini imaging scientists’ findings show that Prometheus causes the structure as the moon approaches and recedes from the F ring every 14.7 hours, during its orbit of Saturn.

As an example of a satellite that enters a ring on a regular basis, the phenomenon posed unique challenges to the understanding of ring-satellite interactions.

Using Cassini data, the team developed a model that shows the mechanism by which Prometheus, as it recedes from its closest approach to the F ring, gravitationally extracts material from the ring. The affected particles do not escape the F ring region; rather, the changes to their orbits produced by Prometheus cause them to oscillate back and forth across the ring. One orbital period after the encounter, the effect is visible as a dark channel or "gore" in the interior of the F ring, and drape-like structures between the channels – in excellent agreement with Cassini images. In this way, Prometheus leaves its mark on the F ring long after the satellite has moved on.

Dr. Carl Murray from Queen Mary, University of London, lead author of the paper and member of the Cassini Imaging Science Subsystem team said, "As the closer and more massive of the F ring’s two shepherding satellites, Prometheus was always the likely culprit for causing changes to this narrow ring. Our model provides a plausible mechanism for the origin of intricate structures detected in the F ring and suggests that streamers, channels and a variety of other phenomena can all be understood in terms of the simple gravitational effect of a satellite on ring particles."

Over time Prometheus is expected to dive deeper into the F ring – with more extreme perturbations – culminating in December 2009 when the two orbits approach their minimum separation.

Dr. Joseph Burns, an imaging team member from Cornell University, Ithaca, N.Y. and also one of the paper’s co-authors said, "We’re eager to learn what the satellite will do to this narrow, already contorted ring, and in turn whether the ring particles will strike Prometheus, changing its surface."

Murray added, "We see the model we have developed very much as a first step in understanding the processes at work. Ultimately this type of research will help us to understand how planets form and evolve."

The work described in the Nature paper is a collaboration between Cassini imaging scientists at Queen Mary, University of London, Cornell University and the Space Science Institute.

Preston Dyches | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>