Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combined Forces Of Physics And Medicine To Investigate Hidden Toxity

27.10.2005


A physicist and a medical researcher at the University of Leicester have received a grant of £100,000 from the Engineering and Physical Sciences Research Council to look at possible toxic damage from inhaled nanoparticles used for a range of everyday purposes.



The small size of nanoparticles in the size range 5-100 nm gives many novel and useful properties and they are used in applications as diverse as face creams, plastics, medical imaging, novel drug therapies and magnetic recording. Such particles are increasingly manufactured and released into the environment on industrial scales.

However, there is growing concern that the very same properties that make them so useful may also lead to enhanced toxicity if the particles are breathed in. The particles are so small - 100,000 particles laid end-to-end would only stretch a few millimetres - that it is not clear how the body’s normal defence mechanisms will cope with them.


By harnessing their combined expertise in physics and medicine, Dr Paul Howes, Department of Physics & Astronomy, and Dr Jonathan Grigg, Department of Infection, Immunity and Inflammation, will research possible toxic damage from inhaled nanoparticles.

Dr Howes and Dr Grigg will produce macrophages from human blood monocytes and expose them, in vitro, to an aerosol of metal nanoparticles, measuring any toxic damage to their DNA. Precise control over the size, chemical composition and dose of particles with enable them to determine whether there is a correlation between size and toxicity. The potential for genotoxicity (and therefore increased vulnerability to lung cancer) is an important factor when setting national air quality guidelines for particles. It is envisaged that this exposure technique, which more closely mimics "real life" exposure, will allow genotoxicity to be assessed for a wide range of manufactured nanoparticles.

Monocyte-derived macrophages were chosen since airway macrophages are a part of the body’s immune system and normally reside deep in the lungs where they form the first line of defence against inhaled particles.

Dr Howes commented: "I am excited at the potential of this collaborative research that will enable us to study the crucially important question of nanoparticle toxicology. The new aerosol spectrometer purchase from the grant, combined with the University’s existing microscopy facility, will give us unique ability to characterise and control the aerosol to answer fundamental questions about the interaction of nanoparticles with the human immune system."

Dr Grigg said: "This research may have profound implications for nanotechnology, if exposure of lung cells to low levels of highly reactive particles induces significant genotoxicity."

Alex Jelley | alfa
Further information:
http://ebulletin.le.ac.uk/news/press-releases/2000-2009/2005/10/nparticle-ymy-79f-3fd
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>