Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combined Forces Of Physics And Medicine To Investigate Hidden Toxity

27.10.2005


A physicist and a medical researcher at the University of Leicester have received a grant of £100,000 from the Engineering and Physical Sciences Research Council to look at possible toxic damage from inhaled nanoparticles used for a range of everyday purposes.



The small size of nanoparticles in the size range 5-100 nm gives many novel and useful properties and they are used in applications as diverse as face creams, plastics, medical imaging, novel drug therapies and magnetic recording. Such particles are increasingly manufactured and released into the environment on industrial scales.

However, there is growing concern that the very same properties that make them so useful may also lead to enhanced toxicity if the particles are breathed in. The particles are so small - 100,000 particles laid end-to-end would only stretch a few millimetres - that it is not clear how the body’s normal defence mechanisms will cope with them.


By harnessing their combined expertise in physics and medicine, Dr Paul Howes, Department of Physics & Astronomy, and Dr Jonathan Grigg, Department of Infection, Immunity and Inflammation, will research possible toxic damage from inhaled nanoparticles.

Dr Howes and Dr Grigg will produce macrophages from human blood monocytes and expose them, in vitro, to an aerosol of metal nanoparticles, measuring any toxic damage to their DNA. Precise control over the size, chemical composition and dose of particles with enable them to determine whether there is a correlation between size and toxicity. The potential for genotoxicity (and therefore increased vulnerability to lung cancer) is an important factor when setting national air quality guidelines for particles. It is envisaged that this exposure technique, which more closely mimics "real life" exposure, will allow genotoxicity to be assessed for a wide range of manufactured nanoparticles.

Monocyte-derived macrophages were chosen since airway macrophages are a part of the body’s immune system and normally reside deep in the lungs where they form the first line of defence against inhaled particles.

Dr Howes commented: "I am excited at the potential of this collaborative research that will enable us to study the crucially important question of nanoparticle toxicology. The new aerosol spectrometer purchase from the grant, combined with the University’s existing microscopy facility, will give us unique ability to characterise and control the aerosol to answer fundamental questions about the interaction of nanoparticles with the human immune system."

Dr Grigg said: "This research may have profound implications for nanotechnology, if exposure of lung cells to low levels of highly reactive particles induces significant genotoxicity."

Alex Jelley | alfa
Further information:
http://ebulletin.le.ac.uk/news/press-releases/2000-2009/2005/10/nparticle-ymy-79f-3fd
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>