Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Guarding giants with tiny protectors

24.10.2005


Nanorobot fabrication makes ultrasmall sensors possible



How do you build an infrared (IR) camera that is small enough to fit on a mini-unmanned aerial vehicle (UAV) without cryogenic cooling? Call in the nanobots.

Researchers working with the Office of Naval Research (ONR) have developed a way to build extremely small sensors using nanorobot fabrication. This new process, created by Harold Szu and James Buss of ONR and implemented by Xi Ning of Michigan State University, allows a human operator using a powerful microscope and hand-held controller to manipulate nano-sized contact points remotely--like using extremely small hands--to construct the pixel elements that will form the heart of the sensor. Each pixel will be composed of carbon nanotubes, which have nanoscale diameters and submicron lengths. Because of the one-dimensional nature of carbon nanotubes, they have significantly lower thermal noise than traditional semi-conductors. A full-sized camera incorporating this technology would be inexpensive and lightweight--about one tenth the cost, weight, and size of a conventional digital camera.


The reason for making such a small sensor has to do with the largest of things--protecting multibillion-dollar aircraft carriers and their thousands of Sailors. Today, missiles have gotten smaller, stealthier, and more difficult to detect than ever--and you don’t need to have the budget of a superpower (or even be a power at all) to buy or manufacture them. To improve the ability of carrier strike groups to detect these missiles over the horizon, the U.S. Navy is searching for ways to augment its surveillance capabilities with a covert team of mini-UAVs equipped with passive sensors that can cruise near the ocean surface at slow speeds for many hours.

One of the salient features distinguishing a missile plume from flare camouflage is the unique characteristics of a plume’s IR signature, especially in the mid-IR spectrum. The signal-to-noise ratio of a conventional IR detector array operating in the ocean environment, however, demands the use of cumbersome liquid nitrogen cryogenic cooling for all current mid-IR spectrum cameras. Unfortunately, a mini-UAV’s payload limitation does not allow such a bulky technology on board--but a small UAV is possible with the advent of nano-based sensors.

The proposed IR camera is being considered for other applications as well, including the field of breast cancer detection. "This new technology will revolutionize how sensors, cameras, and countless other medical devices will be made by a nanorobot, which can respond to public demands of non-contact examinations for early cancer screening at every household," said Father Giofranco Basti of the Pontifical Lateran University at the Vatican City, Rome, Italy. Next spring, the university will conduct a screening test bed of early breast tumor treatment using this new technology in collaboration with ONR.

Colin Babb | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>