Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Guarding giants with tiny protectors

24.10.2005


Nanorobot fabrication makes ultrasmall sensors possible



How do you build an infrared (IR) camera that is small enough to fit on a mini-unmanned aerial vehicle (UAV) without cryogenic cooling? Call in the nanobots.

Researchers working with the Office of Naval Research (ONR) have developed a way to build extremely small sensors using nanorobot fabrication. This new process, created by Harold Szu and James Buss of ONR and implemented by Xi Ning of Michigan State University, allows a human operator using a powerful microscope and hand-held controller to manipulate nano-sized contact points remotely--like using extremely small hands--to construct the pixel elements that will form the heart of the sensor. Each pixel will be composed of carbon nanotubes, which have nanoscale diameters and submicron lengths. Because of the one-dimensional nature of carbon nanotubes, they have significantly lower thermal noise than traditional semi-conductors. A full-sized camera incorporating this technology would be inexpensive and lightweight--about one tenth the cost, weight, and size of a conventional digital camera.


The reason for making such a small sensor has to do with the largest of things--protecting multibillion-dollar aircraft carriers and their thousands of Sailors. Today, missiles have gotten smaller, stealthier, and more difficult to detect than ever--and you don’t need to have the budget of a superpower (or even be a power at all) to buy or manufacture them. To improve the ability of carrier strike groups to detect these missiles over the horizon, the U.S. Navy is searching for ways to augment its surveillance capabilities with a covert team of mini-UAVs equipped with passive sensors that can cruise near the ocean surface at slow speeds for many hours.

One of the salient features distinguishing a missile plume from flare camouflage is the unique characteristics of a plume’s IR signature, especially in the mid-IR spectrum. The signal-to-noise ratio of a conventional IR detector array operating in the ocean environment, however, demands the use of cumbersome liquid nitrogen cryogenic cooling for all current mid-IR spectrum cameras. Unfortunately, a mini-UAV’s payload limitation does not allow such a bulky technology on board--but a small UAV is possible with the advent of nano-based sensors.

The proposed IR camera is being considered for other applications as well, including the field of breast cancer detection. "This new technology will revolutionize how sensors, cameras, and countless other medical devices will be made by a nanorobot, which can respond to public demands of non-contact examinations for early cancer screening at every household," said Father Giofranco Basti of the Pontifical Lateran University at the Vatican City, Rome, Italy. Next spring, the university will conduct a screening test bed of early breast tumor treatment using this new technology in collaboration with ONR.

Colin Babb | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>