Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spacecraft to investigate if Venus’s lack of magnetism is the cause of her inhospitable atmosphere

18.10.2005


Scientists today revealed their plans to analyse the magnetic field around Venus in a bid to discover whether the planet’s lack of an internal magnetic field is the reason it is so inhospitable.



At a press conference in London hosted by the Particle Physics and Astronomy Research Council, Chris Carr of Imperial College London described how the magnetometer instrument onboard the Venus Express spacecraft will measure the magnetic field around the planet.

Scientists hope their results will confirm why Venus is so inhospitable in comparison to Earth and has almost no water, in spite of the similarities between the two planets. Earth and Venus formed at the same time from the same basic materials and they are very similar in size and mass.


Scientists believe that Venus is inhospitable because its atmosphere is being eroded by the ‘solar wind’, a magnetised, electrically charged gas that streams off the Sun at a million miles per hour. This ’plasma’ from the Sun slams into an electrically charged part of Venus’s atmosphere known as the ionosphere, which is ionised by solar radiation.

The ionosphere provides a magnetic barrier against the solar wind but scientists believe that this barrier has much less protective power than Earth’s internal magnetic field. This internal magnetic field creates a ’bubble’ around Earth that protects it from the solar wind.

Chris Carr, who helped to build the instrument alongside colleagues at the Space Research Institute in Austria and the Institute for Extraterrestrial Physics in Braunschweig, Germany, explained: "We are going to make a ’map’ of the plasma around Venus. By measuring the magnetic field, we can analyse the complex physical processes that result when the solar wind and Venus’s ionosphere collide."

The Venus Express magnetometer is similar to the one that the Imperial team has been involved in building and controlling onboard the Cassini spacecraft. Cassini’s magnetometer recently revealed an unexpected magnetic signature from the Saturnian moon Enceladus, a surprise which led to the discovery of an atmosphere on this tiny moon.

Chris Carr added: “We are going to be able to get a substantially enhanced picture of the space environment around Venus using the new high-resolution magnetometer, coupled with a new high-resolution plasma analyzer. We have a huge number of questions that we hope these instruments can help answer."

Even though the solar wind is travelling at such immense speeds, the Venus ionosphere still presents a significant ‘magnetic barrier’. How do these plasmas mix? How much energy is transferred from the Sun into the Venus atmosphere?” he said.

The Magnetometer for the Venus Express mission consists of two small sensors about 5cm by 5cm and weighing about 200g. One is mounted on the end of a metre-long deployable boom and the other sits directly on the spacecraft’s body. The use of two sensors means that the stray magnetic fields produced by the spacecraft can be taken into account when the team is measuring Venus’s magnetic field.

Venus Express sets off on 26th October 2005 and is due to reach Venus in April 2006.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>