Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spacecraft to investigate if Venus’s lack of magnetism is the cause of her inhospitable atmosphere

18.10.2005


Scientists today revealed their plans to analyse the magnetic field around Venus in a bid to discover whether the planet’s lack of an internal magnetic field is the reason it is so inhospitable.



At a press conference in London hosted by the Particle Physics and Astronomy Research Council, Chris Carr of Imperial College London described how the magnetometer instrument onboard the Venus Express spacecraft will measure the magnetic field around the planet.

Scientists hope their results will confirm why Venus is so inhospitable in comparison to Earth and has almost no water, in spite of the similarities between the two planets. Earth and Venus formed at the same time from the same basic materials and they are very similar in size and mass.


Scientists believe that Venus is inhospitable because its atmosphere is being eroded by the ‘solar wind’, a magnetised, electrically charged gas that streams off the Sun at a million miles per hour. This ’plasma’ from the Sun slams into an electrically charged part of Venus’s atmosphere known as the ionosphere, which is ionised by solar radiation.

The ionosphere provides a magnetic barrier against the solar wind but scientists believe that this barrier has much less protective power than Earth’s internal magnetic field. This internal magnetic field creates a ’bubble’ around Earth that protects it from the solar wind.

Chris Carr, who helped to build the instrument alongside colleagues at the Space Research Institute in Austria and the Institute for Extraterrestrial Physics in Braunschweig, Germany, explained: "We are going to make a ’map’ of the plasma around Venus. By measuring the magnetic field, we can analyse the complex physical processes that result when the solar wind and Venus’s ionosphere collide."

The Venus Express magnetometer is similar to the one that the Imperial team has been involved in building and controlling onboard the Cassini spacecraft. Cassini’s magnetometer recently revealed an unexpected magnetic signature from the Saturnian moon Enceladus, a surprise which led to the discovery of an atmosphere on this tiny moon.

Chris Carr added: “We are going to be able to get a substantially enhanced picture of the space environment around Venus using the new high-resolution magnetometer, coupled with a new high-resolution plasma analyzer. We have a huge number of questions that we hope these instruments can help answer."

Even though the solar wind is travelling at such immense speeds, the Venus ionosphere still presents a significant ‘magnetic barrier’. How do these plasmas mix? How much energy is transferred from the Sun into the Venus atmosphere?” he said.

The Magnetometer for the Venus Express mission consists of two small sensors about 5cm by 5cm and weighing about 200g. One is mounted on the end of a metre-long deployable boom and the other sits directly on the spacecraft’s body. The use of two sensors means that the stray magnetic fields produced by the spacecraft can be taken into account when the team is measuring Venus’s magnetic field.

Venus Express sets off on 26th October 2005 and is due to reach Venus in April 2006.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>