Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeding the Monster

18.10.2005


ESO PR Photo 33a/05 is a colour-composite image of the central 5,500 light-years wide region of the spiral galaxy NGC 1097, obtained with the NACO adaptive optics on the VLT. More than 300 star forming regions - white spots in the image - are distributed along a ring of dust and gas in the image. At the centre of the ring there is a bright central source where the active galactic nucleus and its super-massive black hole are located. The image was constructed by stacking J- (blue), H- (green), and Ks-band (red) images. North is up and East is to the left. The field of view is 24 x 29 arcsec2, i.e. less than 0.03% the size of the full moon!


New VLT Images Reveal the Surroundings of a Super-massive Black Hole

Near-infrared images of the active galaxy NGC 1097, obtained with the NACO adaptive optics instrument on ESO’s Very Large Telescope, disclose with unprecedented detail a complex central network of filamentary structure spiralling down to the centre of the galaxy. These observations provide astronomers with new insights on how super-massive black holes lurking inside galaxies get fed.

"This is possibly the first time that a detailed view of the channelling process of matter, from the main part of the galaxy down to the very end in the nucleus is released," says Almudena Prieto (Max-Planck Institute, Heidelberg, Germany), lead author of the paper describing these results.



Located at a distance of about 45 million light-years in the southern constellation Fornax (the Furnace), NGC 1097 is a relatively bright, barred spiral galaxy seen face-on. At magnitude 9.5, and thus just 25 times fainter than the faintest object that can be seen with the unaided eye, it appears in small telescopes as a bright, circular disc.

NGC 1097 is a very moderate example of an Active Galactic Nucleus (AGN), whose emission is thought to arise from matter (gas and stars) falling into oblivion in a central black hole. However, NGC 1097 possesses a comparatively faint nucleus only, and the black hole in its centre must be on a very strict "diet": only a small amount of gas and stars is apparently being swallowed by the black hole at any given moment.

Astronomers have been trying to understand for a long time how the matter is "gulped" down towards the black hole. Watching directly the feeding process requires very high spatial resolution at the centre of galaxies. This can be achieved by means of interferometry as was done with the VLTI MIDI instrument on the central parts of another AGN, NGC 1068 (see ESO PR 17/03), or with adaptive optics [1].

Thus, astronomers [2] obtained images of NGC 1097 with the adaptive optics NACO instrument attached to Yepun, the fourth Unit Telescope of ESO’s VLT. These new images probe with unprecedented detail the presence and extent of material in the very proximity of the nucleus. The resolution achieved with the images is about 0.15 arcsecond, corresponding to about 30 light-years across. For comparison, this is only 8 times the distance between the Sun and its nearest star, Proxima Centauri.

As can be seen in last year’s image (see ESO PR Photo 35d/04), NGC 1097 has a very strong bar and a prominent star-forming ring inside it. Interior to the ring, a secondary bar crosses the nucleus almost perpendicular to the primary bar. The newly released NACO near-infrared images show in addition more than 300 star-forming regions, a factor four larger than previously known from Hubble Space Telescope images. These "HII regions" can be seen as white spots in ESO PR Photo 33a/05. At the centre of the ring, a moderate active nucleus is located. Details from the nucleus and its immediate surroundings are however outshone by the overwhelming stellar light of the galaxy seen as the bright diffuse emission all over the image.

The astronomers therefore applied a masking technique that allowed them to suppress the stellar light (see ESO PR Photo 33b/05). This unveils a bright nucleus at the centre, but mostly a complex central network of filamentary structures spiralling down to the centre. "Our analysis of the VLT/NACO images of NGC 1097 shows that these filaments end up at the very centre of the galaxy", says co-author Juha Reunanen from ESO.

"This network closely resembles those seen in computer models", adds co-worker Witold Maciejewski from the University of Oxford, UK. "The nuclear filaments revealed in the NACO images are the tracers of cold dust and gas being channelled towards the centre to eventually ignite the AGN."

The astronomers also note that the curling of the spiral pattern in the innermost 300 light-years seem indeed to confirm the presence of a super-massive black hole in the centre of NGC 1097. Such a black hole in the centre of a galaxy causes the nuclear spiral to wind up as it approaches the centre, while in its absence the spiral would be unwinding as it moves closer to the centre.

An image of NGC 1097 and its small companion, NGC 1097A, was taken in December 2004, in the presence of Chilean President Lagos with the VIMOS instrument on ESO’s Very Large Telescope (VLT). It is available as ESO PR Photo 35d/04.

Notes
[1]: "Adaptive Optics" is a modern technique by which ground-based telescopes can overcome the undesirable blurring effect of atmospheric turbulence. With adaptive optics, the images of stars and galaxies captured by these instruments are at the theoretical limit, i.e., almost as sharp as if the telescopes were in space.
[2]: The astronomers are M. Almudena Prieto (Max-Planck Institute for Astronomy, Heidelberg, Germany), Witold Maciejewski (University of Oxford, UK), and Juha Reunanen (ESO, Garching, Germany).

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/phot-33-05.html

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>