Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Venus with Love

18.10.2005


On 26th October the European Space Agency’s Venus Express spacecraft is scheduled to launch from Baikonur Cosmodrome in Kazakhstan en route to Earth’s closest planetary neighbour - the ultimate “greenhouse” planet, Venus. This is the first European mission to Venus, the nearest planet to the Earth and the brightest object in our night sky, apart from the Moon.



Whilst Earth and Venus share certain characteristics such as age, mass and diameter they are worlds apart in other respects. Venus has a very different climate to Earth’s with a thick corrosive atmosphere giving rise to a run away greenhouse effect, crushing pressure and extremely hot surface temperatures. But why has it evolved this way? Venus Express will provide the answer.

Professor Fred Taylor from the University of Oxford, a member of the Venus Express Project team (and one of the proposers of the mission), explains the appeal of visiting Venus, “Whilst there have been several past missions to Venus by the Americans and Russians, Venus has always proved difficult to explore. Venus Express is equipped to peer beneath the thick clouds that encircle the planet and probe the mysteries of Venus with a precision never achieved before and find out why Venus evolved so differently to Earth.”


Professor Keith Mason, Chief Executive Officer of the Particle Physics and Astronomy Research Council said, “With the Earth evolving to become much warmer and polluted, our sister planet, Venus, has much to offer us in terms of understanding our own climate. The science data set to return next year will have a huge impact on the way in which we deal with conditions on Earth demonstrating how the exploration of the Solar System has real impact on our daily lives.”

Venus Express builds on the heritage of ESA’s successful Mars Express mission by using not only the same spacecraft design but also making use of spares and copies of instruments from both Mars Express and Rosetta. This has enabled the project team to produce the spacecraft to a tight time schedule (less than 4 years) and with a modest budget of £140 million (200 million Euros).

Professor David Southwood, ESA’s Director of Science said, "The launch of Venus Express marks a significant milestone for ESA’s space science programme as our fastest (and one of the cheapest) mission implementation ever. Of course, it had to be simple and it slipstreamed on both Mars Express and Rosetta. However, against the sceptics’ expectations, we stepped up to the challenge, started just about three years ago, and now we are off to Venus!"

UK scientists and industrialists have a strong involvement in the mission with a team from the University of Oxford involved in the mission planning and science operations. University College London’s Mullard Space Science Laboratory and CCLRC’s Rutherford Appleton Laboratory both have roles in the building and operation of ASPERA-4, a plasma analyser which will investigate the interaction of the solar wind and the atmosphere. The atmospheric pressure on Venus is almost one hundred times that on Earth. ASPERA-4 will study the escape process and rates for the first time in detail at Venus, providing an intriguing comparison to our other near Earth neighbour, Mars, which is also unmagnetized.

Scientists from Imperial College were involved in the design and build of the Magnetometer and along with scientists from the University of Sheffield are co-investigators on this instrument which will study how the solar wind interacts with Venus’s atmosphere to give unmagnetized Venus an induced magnetic field. Other instruments will study the atmosphere-surface interaction including possible, but as yet undetected, volcanism.

The instrument suite is completed by the Venus Monitoring Camera (to image the surface temperature composition), Venus Radio Science experiment, SPICAM (a UV and IR atmospheric spectrometer), VIRTIS (a visible-IR imaging spectrometer) and a Planetary Fourier Spectrometer (to make global 3D measurements of atmospheric temperature and composition to search for volcanic activity).

Lord Sainsbury, Minister for Science and Innovation said, “The UK is playing an important role in this exciting mission that will help us understand the full impact of climate change. The mission is made all the more cost effective by the fact that it has been put together efficiently by the re-use and recycling of existing space instrumentation.”

EADS Astrium Ltd, Toulouse are the main contractor for the spacecraft with the propulsion system designed, built and tested at the company’s UK site at Stevenage. SciSys Ltd, based in Chippenham, are responsible for the all important mission control software which supports the commanding of the spacecraft and the monitoring of the onboard spacecraft state.

After a 5 month journey to Venus the spacecraft will begin its science operations in April 2006. It will continue orbiting Venus for 500 days (2 Venusian days).

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk/Nw/venus_launch.asp

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>