Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Venus with Love

18.10.2005


On 26th October the European Space Agency’s Venus Express spacecraft is scheduled to launch from Baikonur Cosmodrome in Kazakhstan en route to Earth’s closest planetary neighbour - the ultimate “greenhouse” planet, Venus. This is the first European mission to Venus, the nearest planet to the Earth and the brightest object in our night sky, apart from the Moon.



Whilst Earth and Venus share certain characteristics such as age, mass and diameter they are worlds apart in other respects. Venus has a very different climate to Earth’s with a thick corrosive atmosphere giving rise to a run away greenhouse effect, crushing pressure and extremely hot surface temperatures. But why has it evolved this way? Venus Express will provide the answer.

Professor Fred Taylor from the University of Oxford, a member of the Venus Express Project team (and one of the proposers of the mission), explains the appeal of visiting Venus, “Whilst there have been several past missions to Venus by the Americans and Russians, Venus has always proved difficult to explore. Venus Express is equipped to peer beneath the thick clouds that encircle the planet and probe the mysteries of Venus with a precision never achieved before and find out why Venus evolved so differently to Earth.”


Professor Keith Mason, Chief Executive Officer of the Particle Physics and Astronomy Research Council said, “With the Earth evolving to become much warmer and polluted, our sister planet, Venus, has much to offer us in terms of understanding our own climate. The science data set to return next year will have a huge impact on the way in which we deal with conditions on Earth demonstrating how the exploration of the Solar System has real impact on our daily lives.”

Venus Express builds on the heritage of ESA’s successful Mars Express mission by using not only the same spacecraft design but also making use of spares and copies of instruments from both Mars Express and Rosetta. This has enabled the project team to produce the spacecraft to a tight time schedule (less than 4 years) and with a modest budget of £140 million (200 million Euros).

Professor David Southwood, ESA’s Director of Science said, "The launch of Venus Express marks a significant milestone for ESA’s space science programme as our fastest (and one of the cheapest) mission implementation ever. Of course, it had to be simple and it slipstreamed on both Mars Express and Rosetta. However, against the sceptics’ expectations, we stepped up to the challenge, started just about three years ago, and now we are off to Venus!"

UK scientists and industrialists have a strong involvement in the mission with a team from the University of Oxford involved in the mission planning and science operations. University College London’s Mullard Space Science Laboratory and CCLRC’s Rutherford Appleton Laboratory both have roles in the building and operation of ASPERA-4, a plasma analyser which will investigate the interaction of the solar wind and the atmosphere. The atmospheric pressure on Venus is almost one hundred times that on Earth. ASPERA-4 will study the escape process and rates for the first time in detail at Venus, providing an intriguing comparison to our other near Earth neighbour, Mars, which is also unmagnetized.

Scientists from Imperial College were involved in the design and build of the Magnetometer and along with scientists from the University of Sheffield are co-investigators on this instrument which will study how the solar wind interacts with Venus’s atmosphere to give unmagnetized Venus an induced magnetic field. Other instruments will study the atmosphere-surface interaction including possible, but as yet undetected, volcanism.

The instrument suite is completed by the Venus Monitoring Camera (to image the surface temperature composition), Venus Radio Science experiment, SPICAM (a UV and IR atmospheric spectrometer), VIRTIS (a visible-IR imaging spectrometer) and a Planetary Fourier Spectrometer (to make global 3D measurements of atmospheric temperature and composition to search for volcanic activity).

Lord Sainsbury, Minister for Science and Innovation said, “The UK is playing an important role in this exciting mission that will help us understand the full impact of climate change. The mission is made all the more cost effective by the fact that it has been put together efficiently by the re-use and recycling of existing space instrumentation.”

EADS Astrium Ltd, Toulouse are the main contractor for the spacecraft with the propulsion system designed, built and tested at the company’s UK site at Stevenage. SciSys Ltd, based in Chippenham, are responsible for the all important mission control software which supports the commanding of the spacecraft and the monitoring of the onboard spacecraft state.

After a 5 month journey to Venus the spacecraft will begin its science operations in April 2006. It will continue orbiting Venus for 500 days (2 Venusian days).

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk/Nw/venus_launch.asp

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>