Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Venus with Love

18.10.2005


On 26th October the European Space Agency’s Venus Express spacecraft is scheduled to launch from Baikonur Cosmodrome in Kazakhstan en route to Earth’s closest planetary neighbour - the ultimate “greenhouse” planet, Venus. This is the first European mission to Venus, the nearest planet to the Earth and the brightest object in our night sky, apart from the Moon.



Whilst Earth and Venus share certain characteristics such as age, mass and diameter they are worlds apart in other respects. Venus has a very different climate to Earth’s with a thick corrosive atmosphere giving rise to a run away greenhouse effect, crushing pressure and extremely hot surface temperatures. But why has it evolved this way? Venus Express will provide the answer.

Professor Fred Taylor from the University of Oxford, a member of the Venus Express Project team (and one of the proposers of the mission), explains the appeal of visiting Venus, “Whilst there have been several past missions to Venus by the Americans and Russians, Venus has always proved difficult to explore. Venus Express is equipped to peer beneath the thick clouds that encircle the planet and probe the mysteries of Venus with a precision never achieved before and find out why Venus evolved so differently to Earth.”


Professor Keith Mason, Chief Executive Officer of the Particle Physics and Astronomy Research Council said, “With the Earth evolving to become much warmer and polluted, our sister planet, Venus, has much to offer us in terms of understanding our own climate. The science data set to return next year will have a huge impact on the way in which we deal with conditions on Earth demonstrating how the exploration of the Solar System has real impact on our daily lives.”

Venus Express builds on the heritage of ESA’s successful Mars Express mission by using not only the same spacecraft design but also making use of spares and copies of instruments from both Mars Express and Rosetta. This has enabled the project team to produce the spacecraft to a tight time schedule (less than 4 years) and with a modest budget of £140 million (200 million Euros).

Professor David Southwood, ESA’s Director of Science said, "The launch of Venus Express marks a significant milestone for ESA’s space science programme as our fastest (and one of the cheapest) mission implementation ever. Of course, it had to be simple and it slipstreamed on both Mars Express and Rosetta. However, against the sceptics’ expectations, we stepped up to the challenge, started just about three years ago, and now we are off to Venus!"

UK scientists and industrialists have a strong involvement in the mission with a team from the University of Oxford involved in the mission planning and science operations. University College London’s Mullard Space Science Laboratory and CCLRC’s Rutherford Appleton Laboratory both have roles in the building and operation of ASPERA-4, a plasma analyser which will investigate the interaction of the solar wind and the atmosphere. The atmospheric pressure on Venus is almost one hundred times that on Earth. ASPERA-4 will study the escape process and rates for the first time in detail at Venus, providing an intriguing comparison to our other near Earth neighbour, Mars, which is also unmagnetized.

Scientists from Imperial College were involved in the design and build of the Magnetometer and along with scientists from the University of Sheffield are co-investigators on this instrument which will study how the solar wind interacts with Venus’s atmosphere to give unmagnetized Venus an induced magnetic field. Other instruments will study the atmosphere-surface interaction including possible, but as yet undetected, volcanism.

The instrument suite is completed by the Venus Monitoring Camera (to image the surface temperature composition), Venus Radio Science experiment, SPICAM (a UV and IR atmospheric spectrometer), VIRTIS (a visible-IR imaging spectrometer) and a Planetary Fourier Spectrometer (to make global 3D measurements of atmospheric temperature and composition to search for volcanic activity).

Lord Sainsbury, Minister for Science and Innovation said, “The UK is playing an important role in this exciting mission that will help us understand the full impact of climate change. The mission is made all the more cost effective by the fact that it has been put together efficiently by the re-use and recycling of existing space instrumentation.”

EADS Astrium Ltd, Toulouse are the main contractor for the spacecraft with the propulsion system designed, built and tested at the company’s UK site at Stevenage. SciSys Ltd, based in Chippenham, are responsible for the all important mission control software which supports the commanding of the spacecraft and the monitoring of the onboard spacecraft state.

After a 5 month journey to Venus the spacecraft will begin its science operations in April 2006. It will continue orbiting Venus for 500 days (2 Venusian days).

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk/Nw/venus_launch.asp

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>