Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Qubit link could pave the way for world’s most powerful computers

17.10.2005


Scientists at The University of Manchester have made a major breakthrough which could pave the way for a new type of high-speed computer.



Professor Richard Winpenny, of the School of Chemistry and a team of international researchers, have discovered a new method which could hold the key to creating the first practical quantum computers.

If built, quantum computers would be the most powerful computers ever made, with speeds millions of times faster than the average PC for some calculations. These speeds would be valuable in factoring large numbers, and therefore extremely useful for encrypting information.


Professor Richard Winpenny and the research team have for the first time demonstrated how qubit rings, pieces of quantum information, can be linked together.

The breakthrough, which results from three years research, opens up the possibility of being able to create quantum gates - a more advanced version of processors found in modern computers.

Professor Winpenny, said: "Linking these molecules not only gives us a much better understanding of how these molecules interact but it also gives us more control over how they interact, which is essential if we are to ever successfully implement quantum gates.

"This is the start rather than the finish in terms of the development of a quantum computer, but now that we have shown we can do this, it gives us clear targets."

The full results of the research will be published in issue 40 of the Chemistry Journal Angewandte Chemie. The Paper is entitled: "Linking Rings through Diamines and Clusters: Exploring Synthetic Methods for Making Magnetic Quantum Gates."

The research, which was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Royal Society and the European Commission, was carried out in collaboration with The Italian National Institute for the Physics of Matter (Modena) and the Centre National de la Recherche Scientifique (Grenoble). Key to the collaboration is a European funded Network of Excellence MagmaNet - which has recently been founded to underpin research in molecular magnetism.

Simon Hunter | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>