Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Qubit link could pave the way for world’s most powerful computers

17.10.2005


Scientists at The University of Manchester have made a major breakthrough which could pave the way for a new type of high-speed computer.



Professor Richard Winpenny, of the School of Chemistry and a team of international researchers, have discovered a new method which could hold the key to creating the first practical quantum computers.

If built, quantum computers would be the most powerful computers ever made, with speeds millions of times faster than the average PC for some calculations. These speeds would be valuable in factoring large numbers, and therefore extremely useful for encrypting information.


Professor Richard Winpenny and the research team have for the first time demonstrated how qubit rings, pieces of quantum information, can be linked together.

The breakthrough, which results from three years research, opens up the possibility of being able to create quantum gates - a more advanced version of processors found in modern computers.

Professor Winpenny, said: "Linking these molecules not only gives us a much better understanding of how these molecules interact but it also gives us more control over how they interact, which is essential if we are to ever successfully implement quantum gates.

"This is the start rather than the finish in terms of the development of a quantum computer, but now that we have shown we can do this, it gives us clear targets."

The full results of the research will be published in issue 40 of the Chemistry Journal Angewandte Chemie. The Paper is entitled: "Linking Rings through Diamines and Clusters: Exploring Synthetic Methods for Making Magnetic Quantum Gates."

The research, which was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Royal Society and the European Commission, was carried out in collaboration with The Italian National Institute for the Physics of Matter (Modena) and the Centre National de la Recherche Scientifique (Grenoble). Key to the collaboration is a European funded Network of Excellence MagmaNet - which has recently been founded to underpin research in molecular magnetism.

Simon Hunter | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>