Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Qubit link could pave the way for world’s most powerful computers

17.10.2005


Scientists at The University of Manchester have made a major breakthrough which could pave the way for a new type of high-speed computer.



Professor Richard Winpenny, of the School of Chemistry and a team of international researchers, have discovered a new method which could hold the key to creating the first practical quantum computers.

If built, quantum computers would be the most powerful computers ever made, with speeds millions of times faster than the average PC for some calculations. These speeds would be valuable in factoring large numbers, and therefore extremely useful for encrypting information.


Professor Richard Winpenny and the research team have for the first time demonstrated how qubit rings, pieces of quantum information, can be linked together.

The breakthrough, which results from three years research, opens up the possibility of being able to create quantum gates - a more advanced version of processors found in modern computers.

Professor Winpenny, said: "Linking these molecules not only gives us a much better understanding of how these molecules interact but it also gives us more control over how they interact, which is essential if we are to ever successfully implement quantum gates.

"This is the start rather than the finish in terms of the development of a quantum computer, but now that we have shown we can do this, it gives us clear targets."

The full results of the research will be published in issue 40 of the Chemistry Journal Angewandte Chemie. The Paper is entitled: "Linking Rings through Diamines and Clusters: Exploring Synthetic Methods for Making Magnetic Quantum Gates."

The research, which was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Royal Society and the European Commission, was carried out in collaboration with The Italian National Institute for the Physics of Matter (Modena) and the Centre National de la Recherche Scientifique (Grenoble). Key to the collaboration is a European funded Network of Excellence MagmaNet - which has recently been founded to underpin research in molecular magnetism.

Simon Hunter | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>