Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wetness-defying water?

17.10.2005


Pacific Northwest National Laboratory group discovers a paradox: hydrophobic H2O



Now you can extend that truism about oil and water to water and itself. Water and water don’t always mix, either.

The textbooks say that water readily comes together with other water, open arms of hydrogen clasping oxygen attached to other OH molecules. This is the very definition of “wetness.” But scientists at Pacific Northwest National Laboratory have observed a first: a single layer of water—ice grown on a platinum wafer—that gives the cold shoulder to subsequent layers of ice that come into contact with it.


“Water-surface interactions are ubiquitous in nature and play an important role in many technological applications such as catalysis and corrosion,” said Greg Kimmel, staff scientist at the Department of Energy lab and lead author of a paper to appear Oct. 15 in the advance online edition of Physical Review Letters. “It was assumed that one end of the water molecule would bind to metal, and at the other end would be these nice hydrogen attachment points for the atoms in next layer of water.”

A theory out of Cambridge University last year suggested that these attachment points, or “dangling OH’s,” did not exist, that instead of dangling, the OH’s were drawn by the geometry of hexagonal noble-metal surfaces and clung to that.

Kimmel and his co-authors, working at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory, tested the theory with a technique called rare gas physisorption that enlists krypton to probe metal surfaces and water layers on those surfaces. They found that the first single layer of water, or monolayer, wetted the platinum surface as they had expected but “that subsequent layers did not wet the first layer,” Kimmel said. “In other words, the first layer of water is hydrophobic.”

The results jibe with an earlier Stanford University study that used X-ray adsorption to show that rather than being fixed pointing outward in the dangling position, wet and ready to receive the next water layer, the arms of a water monolayer on a metal surface are double-jointed. They swivel back toward the surface of the metal to find a place to bind. To the water molecules approaching this bent-over-backward surface, the layer has all the attractiveness of a freshly waxed car’s hood.

The second layer beads up, but that’s not all: Additional water’s attraction to that first hydrophobic water monolayer is so weak that 50 or more ice-crystal layers can be piled atop the first until all the so-called non-wetting portions are covered—akin to “the coalescence of water drops on a waxed car in a torrential downpour,” said Bruce Kay, PNNL laboratory fellow and co-author with Kimmel and PNNL colleagues Nick Petrik and Zdenek Dohnálek.

Kimmel said that self-loathing water on metal is more than a curiosity and will come as a surprise to many in the field who assumed that water films uniformly cover surfaces. Hundreds of experiments have been done on thin water films grown on metal surfaces to learn such things as how these films affect molecules in which they come into contact and what role heat, light and high-energy radiation play in such interactions.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 4,100 staff, has a $700 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>