Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black Holes provide a breeding ground for stars

14.10.2005


The extreme environment surrounding the black hole at the centre of our galaxy is birthplace for new stars, according to a scientist from the University of Leicester.



Dr Sergei Nayakshin and his co-author, Rashid Sunyaev of the Max Plank Institute for Physics in Germany, used Chandra X-ray Observatory images to study the region around Sgr A*, the supermassive black hole at the centre of the Milky Way. Their results challenge the traditional theories of star formation, as they show that stars have formed close in to the black hole and contain a much smaller percentage of low mass stars than predicted.

This is the first solid observational evidence for star formation in an accretion disc around a black hole, and it implies that the inner parsecs of galaxies are even more exotic and interesting places than we thought so far. The results are to be published in the Monthly Notices of the Royal Astronomical Society.


"Massive black holes are usually known for violence and destruction, so it’s remarkable that this black hole helped create new stars, not just destroy them", said Dr Nayakshin.

Until now, scientists have proposed two models for how these stars might have formed: the “migration” model, in which a massive star cluster formed far out from the black hole and then its orbit decayed inwards due to dynamical friction with background stars, and the “in-situ” model, in which the gravitational forces in a dense disc of gas balances out the violent tidal forces around the black hole and allows stars to form.

To find out which model was correct, scientists needed to find out more about the types of stars orbiting the black hole. Gas and dust near the black hole block our view of small stars in infra-red and visible wavelengths. However, low-mass stars are strong X-ray emitters and would produce a glow around Sgr A* that would be detectable in the Chandra observations.

Nayakshin and Sunyaev found that if the migration theory were correct, then there should be as many as a million low-mass stars near Sgr A*, which strongly disagreed with the observed X-ray emission. In contrast, Chandra observations did not rule out the in-situ model, but required that massive stars were unusually abundant, dominating the mass budget of the star cluster.

These findings indicate that stars formed in the accretion disc play a key role in deciding how much gas the super-massive black hole gets for its dinner. Massive stars are also expected to “pollute” these discs with metals that stars produce in their cores, and leave behind stellar-mass black holes orbiting the super-massive one within the inner region of the galactic centre. Further research on these unusual high-mass stars may shed light on the still poorly understood mode for creation of such stars in galaxies in general.

The findings may also explain the mysterious ring of stars recently discovered in the nucleus of our neighbouring galaxy, Andromeda, by astronomers using the Hubble Space Telescope.

Anita Heward | alfa
Further information:
http://www.ras.org.uk/index.php?option=com_content&task=view&id=843&Itemid=2
http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=mnl

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>