Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black Holes provide a breeding ground for stars

14.10.2005


The extreme environment surrounding the black hole at the centre of our galaxy is birthplace for new stars, according to a scientist from the University of Leicester.



Dr Sergei Nayakshin and his co-author, Rashid Sunyaev of the Max Plank Institute for Physics in Germany, used Chandra X-ray Observatory images to study the region around Sgr A*, the supermassive black hole at the centre of the Milky Way. Their results challenge the traditional theories of star formation, as they show that stars have formed close in to the black hole and contain a much smaller percentage of low mass stars than predicted.

This is the first solid observational evidence for star formation in an accretion disc around a black hole, and it implies that the inner parsecs of galaxies are even more exotic and interesting places than we thought so far. The results are to be published in the Monthly Notices of the Royal Astronomical Society.


"Massive black holes are usually known for violence and destruction, so it’s remarkable that this black hole helped create new stars, not just destroy them", said Dr Nayakshin.

Until now, scientists have proposed two models for how these stars might have formed: the “migration” model, in which a massive star cluster formed far out from the black hole and then its orbit decayed inwards due to dynamical friction with background stars, and the “in-situ” model, in which the gravitational forces in a dense disc of gas balances out the violent tidal forces around the black hole and allows stars to form.

To find out which model was correct, scientists needed to find out more about the types of stars orbiting the black hole. Gas and dust near the black hole block our view of small stars in infra-red and visible wavelengths. However, low-mass stars are strong X-ray emitters and would produce a glow around Sgr A* that would be detectable in the Chandra observations.

Nayakshin and Sunyaev found that if the migration theory were correct, then there should be as many as a million low-mass stars near Sgr A*, which strongly disagreed with the observed X-ray emission. In contrast, Chandra observations did not rule out the in-situ model, but required that massive stars were unusually abundant, dominating the mass budget of the star cluster.

These findings indicate that stars formed in the accretion disc play a key role in deciding how much gas the super-massive black hole gets for its dinner. Massive stars are also expected to “pollute” these discs with metals that stars produce in their cores, and leave behind stellar-mass black holes orbiting the super-massive one within the inner region of the galactic centre. Further research on these unusual high-mass stars may shed light on the still poorly understood mode for creation of such stars in galaxies in general.

The findings may also explain the mysterious ring of stars recently discovered in the nucleus of our neighbouring galaxy, Andromeda, by astronomers using the Hubble Space Telescope.

Anita Heward | alfa
Further information:
http://www.ras.org.uk/index.php?option=com_content&task=view&id=843&Itemid=2
http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=mnl

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>