Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black Holes provide a breeding ground for stars

14.10.2005


The extreme environment surrounding the black hole at the centre of our galaxy is birthplace for new stars, according to a scientist from the University of Leicester.



Dr Sergei Nayakshin and his co-author, Rashid Sunyaev of the Max Plank Institute for Physics in Germany, used Chandra X-ray Observatory images to study the region around Sgr A*, the supermassive black hole at the centre of the Milky Way. Their results challenge the traditional theories of star formation, as they show that stars have formed close in to the black hole and contain a much smaller percentage of low mass stars than predicted.

This is the first solid observational evidence for star formation in an accretion disc around a black hole, and it implies that the inner parsecs of galaxies are even more exotic and interesting places than we thought so far. The results are to be published in the Monthly Notices of the Royal Astronomical Society.


"Massive black holes are usually known for violence and destruction, so it’s remarkable that this black hole helped create new stars, not just destroy them", said Dr Nayakshin.

Until now, scientists have proposed two models for how these stars might have formed: the “migration” model, in which a massive star cluster formed far out from the black hole and then its orbit decayed inwards due to dynamical friction with background stars, and the “in-situ” model, in which the gravitational forces in a dense disc of gas balances out the violent tidal forces around the black hole and allows stars to form.

To find out which model was correct, scientists needed to find out more about the types of stars orbiting the black hole. Gas and dust near the black hole block our view of small stars in infra-red and visible wavelengths. However, low-mass stars are strong X-ray emitters and would produce a glow around Sgr A* that would be detectable in the Chandra observations.

Nayakshin and Sunyaev found that if the migration theory were correct, then there should be as many as a million low-mass stars near Sgr A*, which strongly disagreed with the observed X-ray emission. In contrast, Chandra observations did not rule out the in-situ model, but required that massive stars were unusually abundant, dominating the mass budget of the star cluster.

These findings indicate that stars formed in the accretion disc play a key role in deciding how much gas the super-massive black hole gets for its dinner. Massive stars are also expected to “pollute” these discs with metals that stars produce in their cores, and leave behind stellar-mass black holes orbiting the super-massive one within the inner region of the galactic centre. Further research on these unusual high-mass stars may shed light on the still poorly understood mode for creation of such stars in galaxies in general.

The findings may also explain the mysterious ring of stars recently discovered in the nucleus of our neighbouring galaxy, Andromeda, by astronomers using the Hubble Space Telescope.

Anita Heward | alfa
Further information:
http://www.ras.org.uk/index.php?option=com_content&task=view&id=843&Itemid=2
http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=mnl

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>