Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dense high performance low alloy PM steels

14.10.2005


Miren Sarasola, Bachelor of Physics Science and researcher of the Materials Department at CEIT, has developed dense high performance low alloy PM steels by liquid phase sintering. The Thesis title is : "Development of dense high performance low alloy PM steels by liquid phase sintering".



The master alloy concept as a mean for obtaining high density low alloyed PM steels was revisited. In a first instance, several master alloys previously reported in the literature, were reproduced in order to carry out experimental sintering trials with the aim of understanding the behaviour of these master alloys, mixed in predetermined proportions, with a selection of Fe-based powders. As a secondary objective the accuracy of theoretical predictions based on ThermoCalc calculations was compared against the reported experimental data. A conjunction of this information with additional experiments tending to determine the diffusion paths and rates of a diversity of elements in multicomponent Fe-based systems was used for identifying adequate alloy additions supported by a computer aided alloy design approach.

On these bases, several mater alloys have been specifically designed, under metallurgic and thermodinamic criterion, to provide the formation of wetting liquid phases at low temperature and also, attractive mechanical properties of the steels. The as-sintered density and properties of the alloys is determined by the amount and type of master alloy used, total carbon content, the sintering temperature and time. The performance of the master alloys during sintering is shown for several commercially available Fe-based powders. The microstructural development of the steels is determined, both, by the chemical composition of the Fe-based powder and the chemical reactions taking place between the Fe and the master alloy particles during high temperature sintering. The influence of alloying and the sintering conditions on the final microstructure, density and mechanical properties is also discussed.


The thesis has been given the Schunk Materials Prize 2005 because the work in the field of sintered metal technology has distinguished itself by its scientific significance.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>