Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence for more dust than ice in comets

14.10.2005


Observations of Comet 9P/Tempel 1 made by ESA’s Rosetta spacecraft after the Deep Impact collision suggest that comets are ‘icy dirtballs’, rather than ‘dirty snowballs’ as previously believed.



Comets spend most of their lifetime in a low-temperature environment far from the Sun. Their relatively unchanged composition carries important information about the origin of the Solar System.

On 4 July this year, the NASA Deep Impact mission sent an ‘impactor’ probe to hit the surface of Comet 9P/Tempel 1 to investigate the interior of a cometary nucleus.


The 370 kg copper impactor hit Comet Tempel 1 with a relative velocity of 10.2 kilometres per second. The collision was expected to generate a crater with a predicted diameter of about 100-125 metres and eject cometary material. It vaporised 4500 tonnes of water, but surprisingly released even more dust.

Tempel 1’s icy nucleus, roughly the size of central Paris, is dynamic and volatile. Possibly the impact would also trigger an outburst of dust and gas, and produce a new active area on the comet’s surface.

Just before impact, the Hubble Space Telescope spotted a new jet of dust streaming from the icy comet. No one knows for sure what causes these outbursts.

Rosetta, with its set of very sensitive instruments for cometary investigations, used its capabilities to observe Tempel 1 before, during and after the impact.

At a distance of about 80 million kilometres from the comet, Rosetta was in the most privileged position to observe the event.

European scientists using Rosetta’s OSIRIS imaging system observed the comet’s nucleus before and after the impact. OSIRIS comprises a narrow-angle camera (NAC) and a wide-angle camera (WAC). Both cameras imaged the extended dust coma from the impact in different filters.

OSIRIS measured the water vapour content and the cross-section of the dust created by the impact. The scientists could then work out the corresponding dust/ice mass ratio, which is larger than one, suggesting that comets are composed more of dust held together by ice, rather than made of ice comtaminated with dust. Hence, they are now ‘icy dirtballs’ rather than ‘dirty snowballs’ as previously believed.

The scientists did not find evidence of enhanced outburst activity of Comet 9P/Tempel 1 in the days after the impact, suggesting that, in general, impacts of meteoroids are not the cause of cometary outbursts. Scientists also hope to make a 3D reconstruction of the dust cloud around the comet by combining the OSIRIS images with those taken from ground observatories.

Gerhard Schwehm | alfa
Further information:
http://www.esa.int/esaCP/SEMUSK5Y3EE_index_0.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>