Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flashes shed light on cosmic clashes

06.10.2005


ESO’s telescopes see afterglows of elusive short bursts



An international team of astronomers led by Danish astronomer Jens Hjorth [1] has for the first time observed the visible light from a short gamma-ray burst (GRB). Using the 1.5m Danish telescope at La Silla (Chile), they showed that these short, intense bursts of gamma-ray emission most likely originate from the violent collision of two merging neutron stars. The same team has also used ESO’s Very Large Telescope to constrain the birthplace of the first ever short burst whose position could be pinpointed with high precision, GRB 050509B. The results are being published in the October 6 issue of the journal Nature.

Gamma-ray bursts, the most powerful type of explosion known in the Universe, have been a mystery for three decades. They come in two different flavours, long and short ones. Over the past few years, international efforts have convincingly shown that long gamma-ray bursts are linked with the ultimate explosion of massive stars (hypernovae; see e.g. ESO PR 16/03).


"The breakthrough in our understanding of long-duration GRBs (those lasting more than about 2 seconds), which ultimately linked them with the energetic explosion of a massive star as it collapses into a black hole, came from the discovery of their long-lived X-ray and optical afterglows," says Jens Hjorth (Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark). "Short duration GRBs have however evaded optical detection for more than 30 years," he adds.

Things changed recently. In the night of July 9 to 10, 2005, the NASA HETE-2 satellite detected a burst of only 70-millisecond duration and, based on the detection of X-rays, was able to determine its position in the sky. Thirty-three hours after, Jens Hjorth and his team obtained images of this region of the sky using the Danish 1.5m telescope at ESO La Silla. The images showed the presence of a fading source, sitting on the edge of a galaxy.

"We have thus discovered the first optical afterglow of a short gamma-ray burst", says co-author Kristian Pedersen, also from the Dark Cosmology Centre of the University of Copenhagen.

The burst, named GRB 050709, resides 11,000 light-years from the centre of a star-forming dwarf galaxy that is about 2,400 million light-years away and is quite young – about 400 million years old. From observations conducted until 20 days after the burst, the astronomers can rule out the occurrence of an energetic hypernova as found in most long GRBs. This supports the hypothesis that short GRBs are the consequence of the merging of two very compact stars.

The same conclusion comes forward from the study of another event, GRB 050509B. This 40-millisecond burst was detected on May 9 by the NASA/ASI/PPARC Swift satellite, which could, for the first time, determine its position. Images obtained with the FORS instruments on ESO’s Very Large Telescope allowed the astronomers to study the vicinity of the burst.

The GRB was found to sit very close to a luminous, non-star forming elliptical galaxy lying 2,700 million light-years away and belonging to a cluster of galaxies.

"It is striking that the two short bursts that have finally been localised appear in quite different environments", says Jesper Sollerman, a member of the team from Stockholm Observatory (Sweden) and Dark Cosmology Centre (Denmark). "The most important aspect of these discoveries is probably that we have finally shown that the short bursts are indeed cosmic explosions from far away in the Universe", he adds.

Because elliptical galaxies are generally devoid of very massive stars but rich in tight binary systems containing compact stars, the association of the burst with this kind of galaxy gives the merging hypothesis another boost.

Whilst Hjorth and his colleagues still caution not to jump too quickly to definitive conclusions, astronomers cannot but marvel at the new chapter in astronomy that has just been opened.

Henri Boffin | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>