Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flashes shed light on cosmic clashes

06.10.2005


ESO’s telescopes see afterglows of elusive short bursts



An international team of astronomers led by Danish astronomer Jens Hjorth [1] has for the first time observed the visible light from a short gamma-ray burst (GRB). Using the 1.5m Danish telescope at La Silla (Chile), they showed that these short, intense bursts of gamma-ray emission most likely originate from the violent collision of two merging neutron stars. The same team has also used ESO’s Very Large Telescope to constrain the birthplace of the first ever short burst whose position could be pinpointed with high precision, GRB 050509B. The results are being published in the October 6 issue of the journal Nature.

Gamma-ray bursts, the most powerful type of explosion known in the Universe, have been a mystery for three decades. They come in two different flavours, long and short ones. Over the past few years, international efforts have convincingly shown that long gamma-ray bursts are linked with the ultimate explosion of massive stars (hypernovae; see e.g. ESO PR 16/03).


"The breakthrough in our understanding of long-duration GRBs (those lasting more than about 2 seconds), which ultimately linked them with the energetic explosion of a massive star as it collapses into a black hole, came from the discovery of their long-lived X-ray and optical afterglows," says Jens Hjorth (Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark). "Short duration GRBs have however evaded optical detection for more than 30 years," he adds.

Things changed recently. In the night of July 9 to 10, 2005, the NASA HETE-2 satellite detected a burst of only 70-millisecond duration and, based on the detection of X-rays, was able to determine its position in the sky. Thirty-three hours after, Jens Hjorth and his team obtained images of this region of the sky using the Danish 1.5m telescope at ESO La Silla. The images showed the presence of a fading source, sitting on the edge of a galaxy.

"We have thus discovered the first optical afterglow of a short gamma-ray burst", says co-author Kristian Pedersen, also from the Dark Cosmology Centre of the University of Copenhagen.

The burst, named GRB 050709, resides 11,000 light-years from the centre of a star-forming dwarf galaxy that is about 2,400 million light-years away and is quite young – about 400 million years old. From observations conducted until 20 days after the burst, the astronomers can rule out the occurrence of an energetic hypernova as found in most long GRBs. This supports the hypothesis that short GRBs are the consequence of the merging of two very compact stars.

The same conclusion comes forward from the study of another event, GRB 050509B. This 40-millisecond burst was detected on May 9 by the NASA/ASI/PPARC Swift satellite, which could, for the first time, determine its position. Images obtained with the FORS instruments on ESO’s Very Large Telescope allowed the astronomers to study the vicinity of the burst.

The GRB was found to sit very close to a luminous, non-star forming elliptical galaxy lying 2,700 million light-years away and belonging to a cluster of galaxies.

"It is striking that the two short bursts that have finally been localised appear in quite different environments", says Jesper Sollerman, a member of the team from Stockholm Observatory (Sweden) and Dark Cosmology Centre (Denmark). "The most important aspect of these discoveries is probably that we have finally shown that the short bursts are indeed cosmic explosions from far away in the Universe", he adds.

Because elliptical galaxies are generally devoid of very massive stars but rich in tight binary systems containing compact stars, the association of the burst with this kind of galaxy gives the merging hypothesis another boost.

Whilst Hjorth and his colleagues still caution not to jump too quickly to definitive conclusions, astronomers cannot but marvel at the new chapter in astronomy that has just been opened.

Henri Boffin | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>