Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen ions caught in the act of wandering

06.10.2005


Erik T.J. Nibbering of the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) and colleagues report for the first time experimental evidence of the motions of hydrogen ions (protons, H+) from acids via water to bases. Until now this has only been estimated as a possible reaction mechanism with theoretical calculations. With this study, the international research team provides insight into fundamental processes in nature (acid-base neutralization, proton transmission through water and through biomembranes), that may well become relevant for technological applications, e.g. in fuel cells. The scientists report on these findings in Science (Vol. 310, pp. 83 – 86) Nibbering’s team consisted of his colleagues from the MBI, Omar F. Mohammed (a Ph. D. student from Egypt) and the theoretician Jens Dreyer, and the group of Ehud Pines at Ben Gurion University of the Negev (Israel).

For a long time, it was not clear how the transfer of protons in aqueous solutions occurs. This is because protons do not move freely in water, but form complexes with water molecules (H2O) through hydrogen bonds. Hydronium (H3O+) is formed, but this ion will not stay alone, because it forms complexes with nearby water molecules in continuously exchanging configurations, e.g. in the form of the so-called Zundel (H5O2+) and Eigen (H9O4+) cations. Erik Nibbering and colleagues succeeded to make snapshots of the proton motions with ultrashort laser flashes. It turned out that hydrogen ions are transmitted from acid to base by water molecules.

Hydrogen ions are transmitted very efficiently through water. First theoretical considerations on this were made exactly 200 years ago by the german-baltic scientist Theodor von Grotthuss, and since exactly 100 years scientists use the phrase “Grotthuss mechanism” to indicate the jump-like transmission of protons to neighbouring water molecules. “One can use the picture of the improving a dike with sandbags”, says Nibbering. A chain of people will transport the sandbags more efficiently and faster towards the dike than everybody on his own. “You could speak of proton hopping”, explains Nibbering. Only recently, numerous theoretical refinements have become available. Detailed calculations, for example, made clear that proton transmission becomes possible when the surrounding water rearranges at particular points in time to enable the Zundel-cation and at other times the Eigen-cation configuration.



Furthermore, theoreticians have derived that the exchange of protons between acids and bases in aqueous solution should occur in a similar fashion. Now, the recent report in Science confirms the hopping model.

The experimental study has become possible by a technique, that enables the determination of the reaction progress in time steps of 150 femtoseconds. This is extremely fast. For comparison: A laser beam will reach the moon in one second. In 100 femtoseconds on the other hand a laser beam will only have reached a distance equivalent to the diameter of a human hair. The scientists have used in their experiments an aqueous acid-base mixture, with which they already have been performing proton transfer studies since two years. “Two years ago, we were not able to observe the intermediate steps. We could only see the beginning and the end of the proton transfer reaction”, says Nibbering. By a change of the components of the acid-base mixture the reaction has been slowed down so that now the sequential proton hopping via water molecules can be recorded.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

More articles from Physics and Astronomy:

nachricht Individualized fiber components for the world market
23.06.2017 | Laser Zentrum Hannover e.V.

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

Understanding animal social networks can aid wildlife conservation

23.06.2017 | Ecology, The Environment and Conservation

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>