Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Presto! It’s a semiconductor

05.10.2005


Researchers at the University of Pennsylvania may not have turned lead into gold as alchemists once sought to do, but they did turn lead and selenium nanocrystals into solids with remarkable physical properties. In the October 5 edition of Physical Review Letters, online now, physicists Hugo E. Romero and Marija Drndic describe how they developed am artificial solid that can be transformed from an insulator to a semiconductor.

The Penn physicists are among many modern researchers who have been experimenting with a different way of transforming matter through artificial solids, formed from closely packed nanoscale crystals, also called "quantum dots."

"Essentially, we’re forming artificial solids from artificial atoms – about 10 times larger than real atoms – whose properties we can fine tune on the quantum level," said Drndic, an assistant professor in Penn’s Department of Physics and Astronomy. "Artificial solids are expected to revolutionize the fabrication of electronic devices in the near future, but now we are only beginning to understand their fundamental behavior."



Artificial solids, in general, are constructed by specifically assembling a number of nanocrystals, each composed of only a few thousand atoms, into a closely packed and well-ordered lattice. Previous researchers have demonstrated that quantum dots can be manipulated to change their physical properties, particularly their optical properties. In fact, the blue laser, which will soon be put into use into commercial products, was a result of early research in changing the colors of quantum dots.

"Many of the physical parameters of these crystals, such as their composition, particle size and interparticle coupling, represent knobs that can be individually controlled at nanometer scales," Drndic said. "Variation of any of these parameters translates directly into either subtle or dramatic changes in the collective electronic, optical and magnetic response of the crystal. In this case were able to adjust its electrical properties."

In their study, Drndic and her colleagues looked at the ability of artificial solids to transport electrons. They demonstrated that, by controlling the coupling of artificial atoms within the crystal, they could increase the electrical conductivity of the entire crystal. According to the researchers, this system promises the possibility of designing artificial solids that can be switched through a variety of electronic phase transitions, with little influence from the local environment. Their findings represent a key step towards the fabrication of functional nanocrystal-based devices and circuits.

Quantum dots are more than simply analogous to individual atoms; they also demonstrate quantum effects, like atoms, but on a larger scale. As a tool for research, quantum dots make it possible for physicists to measure, firsthand, some things only described in theory.

"It is this versatility in both experiment and theory that can potentially turn these quantum dot solids into model systems for achieving a general understanding of the electronic structure of solids," Drndic said. "Not only are we making strides in creating a future generation of electronics, but in doing so we are also getting a deeper understanding of the fundamental properties of matter."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>