Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscientists Describe Electron Movement through Molecules

29.09.2005


Molecular electronics is the ultimate miniaturization of electronics. In this area of research, scientists have been studying the movement of electrons through individual molecules in an effort to understand how they might control and use the process in new technologies. Computers and thousands of other devices could become vastly faster, smaller and more reliable than conventional transistor-based (wire-based) electronics.



A team of Ohio University and Brazilian physicists has taken another step toward this goal. In the Rapid Communication section of the Sept. 15 issue of the journal Physical Review B, the researchers present a new theory of how electrons interact in a molecule.

In the new paper, the team describes what happens to electrons when scientists put two molecules between electrodes, which are bits of tiny conducting wire. Existing theoretical models of molecular electronics take into account that electrons avoid each other, according to Nancy Sandler, Ohio University assistant professor of physics and astronomy. The scientists report that molecular vibrations, in addition to strong electronic interactions, will produce unexpected “transport channels.” The electrons move through the molecule while the molecule vibrates, said Sergio Ulloa, co-author of the paper and Ohio University professor of physics and astronomy.


“The electrons go through the molecule like a pinball and they leave all the bells ringing (atoms moving) as they pass by,” said Ulloa, adding that this model focuses on the general behavior of short molecules. Other scientists studying molecular electronics, he noted, are using longer molecules, such as DNA or carbon-based molecules, to serve as longer “wires” or connectors.

The collaborators on this project – which included Ulloa, Sandler, Brazilian exchange student Edson Vernek and professor Enrique Anda of the Pontifícia Universidade Católica in Rio de Janeiro, Brazil – describe another fascinating capability of the electrons: “The electrons ‘remember’ not only where they are, but where they have been,” Ulloa said. “When the oscillations of the molecules are ‘just right,’ the electrons are either pushed through more efficiently or trapped momentarily in the molecule – a phenomenon physicists call ‘Rabi-assisted tunneling.’ The electrons can really get trapped, like in the pinball machine.”

This electron “trapping” could make molecular transmission even more efficient and help develop molecular switches and other applications.

Molecular electronics is a booming field in physics right now. Scientists have been able to manipulate molecules for only last 15 years, Sandler said, and it may be at least another 20 years before consumers see molecular technology in commercially available devices.

The research collaboration between Ohio University, the Pontifícia Universidade Católica in Rio de Janeiro, Brazil, and the Universidad de Buenos Aires, Argentina, is supported by the National Science Foundation through the project “Correlation Effects and Transport in Nanostructured Materials.” The Brazilian Coordination of Improvement of the Personnel of Superior Level (CAPES) supported Vernek’s visit to Ohio University.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>