Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscientists Describe Electron Movement through Molecules

29.09.2005


Molecular electronics is the ultimate miniaturization of electronics. In this area of research, scientists have been studying the movement of electrons through individual molecules in an effort to understand how they might control and use the process in new technologies. Computers and thousands of other devices could become vastly faster, smaller and more reliable than conventional transistor-based (wire-based) electronics.



A team of Ohio University and Brazilian physicists has taken another step toward this goal. In the Rapid Communication section of the Sept. 15 issue of the journal Physical Review B, the researchers present a new theory of how electrons interact in a molecule.

In the new paper, the team describes what happens to electrons when scientists put two molecules between electrodes, which are bits of tiny conducting wire. Existing theoretical models of molecular electronics take into account that electrons avoid each other, according to Nancy Sandler, Ohio University assistant professor of physics and astronomy. The scientists report that molecular vibrations, in addition to strong electronic interactions, will produce unexpected “transport channels.” The electrons move through the molecule while the molecule vibrates, said Sergio Ulloa, co-author of the paper and Ohio University professor of physics and astronomy.


“The electrons go through the molecule like a pinball and they leave all the bells ringing (atoms moving) as they pass by,” said Ulloa, adding that this model focuses on the general behavior of short molecules. Other scientists studying molecular electronics, he noted, are using longer molecules, such as DNA or carbon-based molecules, to serve as longer “wires” or connectors.

The collaborators on this project – which included Ulloa, Sandler, Brazilian exchange student Edson Vernek and professor Enrique Anda of the Pontifícia Universidade Católica in Rio de Janeiro, Brazil – describe another fascinating capability of the electrons: “The electrons ‘remember’ not only where they are, but where they have been,” Ulloa said. “When the oscillations of the molecules are ‘just right,’ the electrons are either pushed through more efficiently or trapped momentarily in the molecule – a phenomenon physicists call ‘Rabi-assisted tunneling.’ The electrons can really get trapped, like in the pinball machine.”

This electron “trapping” could make molecular transmission even more efficient and help develop molecular switches and other applications.

Molecular electronics is a booming field in physics right now. Scientists have been able to manipulate molecules for only last 15 years, Sandler said, and it may be at least another 20 years before consumers see molecular technology in commercially available devices.

The research collaboration between Ohio University, the Pontifícia Universidade Católica in Rio de Janeiro, Brazil, and the Universidad de Buenos Aires, Argentina, is supported by the National Science Foundation through the project “Correlation Effects and Transport in Nanostructured Materials.” The Brazilian Coordination of Improvement of the Personnel of Superior Level (CAPES) supported Vernek’s visit to Ohio University.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>