Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscientists Describe Electron Movement through Molecules

29.09.2005


Molecular electronics is the ultimate miniaturization of electronics. In this area of research, scientists have been studying the movement of electrons through individual molecules in an effort to understand how they might control and use the process in new technologies. Computers and thousands of other devices could become vastly faster, smaller and more reliable than conventional transistor-based (wire-based) electronics.



A team of Ohio University and Brazilian physicists has taken another step toward this goal. In the Rapid Communication section of the Sept. 15 issue of the journal Physical Review B, the researchers present a new theory of how electrons interact in a molecule.

In the new paper, the team describes what happens to electrons when scientists put two molecules between electrodes, which are bits of tiny conducting wire. Existing theoretical models of molecular electronics take into account that electrons avoid each other, according to Nancy Sandler, Ohio University assistant professor of physics and astronomy. The scientists report that molecular vibrations, in addition to strong electronic interactions, will produce unexpected “transport channels.” The electrons move through the molecule while the molecule vibrates, said Sergio Ulloa, co-author of the paper and Ohio University professor of physics and astronomy.


“The electrons go through the molecule like a pinball and they leave all the bells ringing (atoms moving) as they pass by,” said Ulloa, adding that this model focuses on the general behavior of short molecules. Other scientists studying molecular electronics, he noted, are using longer molecules, such as DNA or carbon-based molecules, to serve as longer “wires” or connectors.

The collaborators on this project – which included Ulloa, Sandler, Brazilian exchange student Edson Vernek and professor Enrique Anda of the Pontifícia Universidade Católica in Rio de Janeiro, Brazil – describe another fascinating capability of the electrons: “The electrons ‘remember’ not only where they are, but where they have been,” Ulloa said. “When the oscillations of the molecules are ‘just right,’ the electrons are either pushed through more efficiently or trapped momentarily in the molecule – a phenomenon physicists call ‘Rabi-assisted tunneling.’ The electrons can really get trapped, like in the pinball machine.”

This electron “trapping” could make molecular transmission even more efficient and help develop molecular switches and other applications.

Molecular electronics is a booming field in physics right now. Scientists have been able to manipulate molecules for only last 15 years, Sandler said, and it may be at least another 20 years before consumers see molecular technology in commercially available devices.

The research collaboration between Ohio University, the Pontifícia Universidade Católica in Rio de Janeiro, Brazil, and the Universidad de Buenos Aires, Argentina, is supported by the National Science Foundation through the project “Correlation Effects and Transport in Nanostructured Materials.” The Brazilian Coordination of Improvement of the Personnel of Superior Level (CAPES) supported Vernek’s visit to Ohio University.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>