Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscientists Describe Electron Movement through Molecules

29.09.2005


Molecular electronics is the ultimate miniaturization of electronics. In this area of research, scientists have been studying the movement of electrons through individual molecules in an effort to understand how they might control and use the process in new technologies. Computers and thousands of other devices could become vastly faster, smaller and more reliable than conventional transistor-based (wire-based) electronics.



A team of Ohio University and Brazilian physicists has taken another step toward this goal. In the Rapid Communication section of the Sept. 15 issue of the journal Physical Review B, the researchers present a new theory of how electrons interact in a molecule.

In the new paper, the team describes what happens to electrons when scientists put two molecules between electrodes, which are bits of tiny conducting wire. Existing theoretical models of molecular electronics take into account that electrons avoid each other, according to Nancy Sandler, Ohio University assistant professor of physics and astronomy. The scientists report that molecular vibrations, in addition to strong electronic interactions, will produce unexpected “transport channels.” The electrons move through the molecule while the molecule vibrates, said Sergio Ulloa, co-author of the paper and Ohio University professor of physics and astronomy.


“The electrons go through the molecule like a pinball and they leave all the bells ringing (atoms moving) as they pass by,” said Ulloa, adding that this model focuses on the general behavior of short molecules. Other scientists studying molecular electronics, he noted, are using longer molecules, such as DNA or carbon-based molecules, to serve as longer “wires” or connectors.

The collaborators on this project – which included Ulloa, Sandler, Brazilian exchange student Edson Vernek and professor Enrique Anda of the Pontifícia Universidade Católica in Rio de Janeiro, Brazil – describe another fascinating capability of the electrons: “The electrons ‘remember’ not only where they are, but where they have been,” Ulloa said. “When the oscillations of the molecules are ‘just right,’ the electrons are either pushed through more efficiently or trapped momentarily in the molecule – a phenomenon physicists call ‘Rabi-assisted tunneling.’ The electrons can really get trapped, like in the pinball machine.”

This electron “trapping” could make molecular transmission even more efficient and help develop molecular switches and other applications.

Molecular electronics is a booming field in physics right now. Scientists have been able to manipulate molecules for only last 15 years, Sandler said, and it may be at least another 20 years before consumers see molecular technology in commercially available devices.

The research collaboration between Ohio University, the Pontifícia Universidade Católica in Rio de Janeiro, Brazil, and the Universidad de Buenos Aires, Argentina, is supported by the National Science Foundation through the project “Correlation Effects and Transport in Nanostructured Materials.” The Brazilian Coordination of Improvement of the Personnel of Superior Level (CAPES) supported Vernek’s visit to Ohio University.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>