Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Colossal Cosmic Eye

29.09.2005


ESO’s VLT Captures Image of Spiral Galaxy NGC 1350


ESO PR Photo 31a/05 is a colour-composite of the spiral galaxy NGC 1350 taken with FORS2 at the ESO Very Large Telescope. The image, totalling 16 minutes of observations, clearly reveals the delicate structures in this gigantic "eye" as well as many background galaxies.



Eighty-five million years ago on small planet Earth, dinosaurs ruled, ignorant of their soon-to-come demise in the great Jurassic extinction, while mammals were still small and shy creatures. The southern Andes of Bolivia, Chile, and Argentina were not yet formed and South America was still an island continent.

Eighty-five million years ago, our Sun and its solar system was 60,000 light years away from where it now stands [1].


Eighty-five million years ago, in another corner of the Universe, light left the beautiful spiral galaxy NGC 1350, for a journey across the universe. Part of this light was recorded at the beginning of the year 2000 AD by ESO’s Very Large Telescope, located on the 2,600m high Cerro Paranal in the Chilean Andes on planet Earth.

Astronomers classify NGC 1350 as an Sa(r) type galaxy, meaning it is a spiral with large central regions. In fact, NGC 1350 lies at the border between the broken-ring spiral type and a grand design spiral with two major outer arms. It is about 130,000 light-years across and, hence, is slightly larger than our Milky Way.

The rather faint and graceful outer arms originate at the inner main ring and can be traced for almost half a circle when they each meet the opposite arm, giving the impression of completing a second outer ring, the "eye". The arms are given a blue tint as a result of the presence of very young and massive stars. The amount of dust, seen as small fragmented dust spirals in the central part of the galaxy and producing a fine tapestry that bear resemblance with blood vessels in the eye, is also a signature of the formation of stars.

The outer parts of the galaxy are so tenuous that many background galaxies can be seen shining through them, providing the observers with an awesome sense of depth. It is indeed quite remarkable to see that with a total exposure time of only 16 minutes, the VLT lets us admire such an incredible collection of island universes wandering about in the sky. ESO PR Photo 31b/05 is a mosaic of some of the most prominent galaxies found in the images. Some of these may reside as far as several billion light-years away, i.e. the light from these galaxies was emitted when the Sun and the Earth had not yet formed.

NGC 1350 is located in the rather inconspicuous southern Fornax (The Furnace) constellation [2]. Recessing from us at a speed of 1860 km/s [3], it is eighty-five million light-years away. It is thus most probably not a member of the Fornax cluster of galaxies, the most notable entity in the constellation, that lies about 65 million light-years away and contains the much more famous barred spiral NGC 1365. On the sky, NGC 1350 stands on the outskirts of the Fornax cluster as can be seen on this image taken with the 1m-Schmidt telescope at La Silla.

Technical information

ESO PR Photo 31a/05 is a colour-composite image based on data collected with the FORS2 instrument on the VLT on January 26, 2000, at a time when Kueyen was still in its commissioning phase. The observations were done in four different filters (B - exposure time: 6 min, V - 4 min, R - 3 min, and I - 3 min), each associated with a given colour (blue, green, orange and red, respectively). The image covers a region of 8x5 arcmin2 on the sky. North is to the left and East is down. The images were extracted from the ESO science data archive and further processed by Henri Boffin (ESO) and the colour composite was made by Haennes Heyer and Ed Janssen (ESO). An image, reproduced from the "Exploring the Southern Sky" book by S. Laustsen, C. Madsen and R.M. West, showing the Fornax Cluster of Galaxies and the position of several prominent members is available on the Fornax Cluster page.

Notes

[1]: The Sun rotates around the centre of the Milky Way and completes a full circle in about 200 million years.

[2]: Fornax (The Furnace) was named by French astronomer Nicolas Louis de La Caille (1713-1762), when observing from the Cape between 1750 and 1754. He defined 14 new southern constellations, giving them the names of scientific instruments - e.g. the Telescope - or names taken from the fine arts - e.g. the Sculptor. The original name he proposed was Fornax Chemica (Latin for chemical furnace) as a tribute to famous chemist Antoine Lavoisier (1743-1794).

[3]: This means that, 85 million years ago, when the light we now record left it, the galaxy was 530,000 light-years closer to us.

Contacts
Henri Boffin
European Southern Observatory, Garching, Germany
Phone: +49 89 3200 6222
Email: hboffin@eso.org

Henri Boffin | EurekAlert!
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/phot-31-05.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>