Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists say universe evolution favored three and seven dimensions

29.09.2005


Physicists who work with a concept called string theory envision our universe as an eerie place with at least nine spatial dimensions, six of them hidden from us, perhaps curled up in some way so they are undetectable. The big question is why we experience the universe in only three spatial dimensions instead of four, or six, or nine.



Two theoretical researchers from the University of Washington and Harvard University think they might have found the answer. They believe the way our universe started and then diluted as it expanded – what they call the relaxation principle – favored formation of three- and seven-dimensional realities. The one we happen to experience has three dimensions.

"That’s what comes out when you do the math," said Andreas Karch, a University of Washington assistant professor of physics and lead author of a new paper that details the theory.


Karch and his collaborator, Lisa Randall, a physics professor at Harvard, set out to model how the universe was arranged right after it began in the big bang, and then watch how the cosmos evolved as it expanded and diluted. The only assumptions were that it started with a generally smooth configuration, with numerous structures – called membranes, or "branes" – that existed in various spatial dimensions from one to nine, all of them large and none curled up.

The researchers allowed the cosmos to evolve naturally, without making any additional assumptions. They found that as the branes diluted, the ones that survived displayed three dimensions or seven dimensions. In our universe, everything we see and experience is stuck to one of those branes, and for it to result in a three-dimensional universe the brane must be three-dimensional.

Other realities, either three- or seven-dimensional, could be hidden from our perception in the universe, Karch said.

"There are regions that feel 3D. There are regions that feel 5D. There are regions that feel 9D. These extra dimensions are infinitely large. We just happen to be in a place that feels 3D to us," he said.

In our world, forces such as electromagnetism only recognize three dimensions and behave according to our laws of physics, their strength diminishing with distance. Gravity, however, cuts across all dimensions, even those not recognized in our world, Karch and Randall say. But they theorize that the force of gravity is localized and, with seven branes, gravity would diminish far more quickly with distance than it does in our three-dimensional world.

"We know there are people in our three-brane existence. In this case we will assume there are people somewhere nearby in a seven-brane existence. The people in the three-brane would have a far more interesting world, with more complex structures," Karch said. With gravity diminishing rapidly with distance, a seven-dimensional existence would not have planets with stable orbits around their sun, Karch said.

"I am not precisely sure what a universe with such a short-range gravity would look like, mostly because it is always difficult to imagine how life would develop under completely different circumstances," he said. "But in any case, planetary systems as we know them wouldn’t form. The possibility of stable orbits is what makes the three-dimensional world more interesting."

Karch and Randall detail their work in the October edition of Physical Review Letters, published by the American Physical Society. The research was supported by grants from the U.S. Department of Energy and the National Science Foundation.

Karch said they hope the work will spark extensive scientific exploration of many other questions involving string theory, extra dimensions and the evolution of the cosmos.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>