Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explain physics with the whole instead of particles

28.09.2005


Physicists usually describe the world from the vantage point of its smallest component parts. But quantum theory does not allow itself to be conceptually crammed into such a framework. Instead, in her dissertation at Uppsala University in Sweden, Barbara Piechocinska takes her point of departure in the mathematics of the dynamic whole and finds that time thereby takes on new meaning.

Throughout the centuries reductionist philosophy has reigned supreme in physics. It has been assumed that it is possible in principle to describe the world by finding the tiniest building blocks and understanding how they interact. Not until the early 20th century was this view of the world seriously challenged, by quantum theory. Quantum theory is regarded as one of the most fundamental of theories, explaining, among other things, the stability of the atom, and it is widely used in technology.

“What’s interesting about quantum theory is that it seems to refuse to be shut up inside a reductionist framework. Instead it seems to indicate that there is an underlying indivisible, in other words holistic, dynamic whole. This means that we should use that as a point of departure and then describe the physical world,” says Barbara Piechocinska.

This is precisely what she has done. In her dissertation she proposes a philosophy that takes dynamics and wholeness as fundamental, instead of static parts that interact. Further, she suggests a mathematical description of this dynamics. Kinetic equations in classical Newtonian mechanics or in quantum theory make no distinction about whether time goes forward or backward. Dynamics, on the other hand, does, being based on wholeness. But Barbara Piechocinska can’t tell whether this is physically relevant or merely a mathematical construction.



“If this approach is elaborated further we will hopefully be able to answer that question. Because then we would see exactly what it predicts and could see whether the predictions square with reality. If it were to be shown that the extra bit is truly relevant in the physical world, then we would have good reason to reconsider our way of looking at the world and dethrone reductionism,” she says.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>