Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explain physics with the whole instead of particles

28.09.2005


Physicists usually describe the world from the vantage point of its smallest component parts. But quantum theory does not allow itself to be conceptually crammed into such a framework. Instead, in her dissertation at Uppsala University in Sweden, Barbara Piechocinska takes her point of departure in the mathematics of the dynamic whole and finds that time thereby takes on new meaning.

Throughout the centuries reductionist philosophy has reigned supreme in physics. It has been assumed that it is possible in principle to describe the world by finding the tiniest building blocks and understanding how they interact. Not until the early 20th century was this view of the world seriously challenged, by quantum theory. Quantum theory is regarded as one of the most fundamental of theories, explaining, among other things, the stability of the atom, and it is widely used in technology.

“What’s interesting about quantum theory is that it seems to refuse to be shut up inside a reductionist framework. Instead it seems to indicate that there is an underlying indivisible, in other words holistic, dynamic whole. This means that we should use that as a point of departure and then describe the physical world,” says Barbara Piechocinska.

This is precisely what she has done. In her dissertation she proposes a philosophy that takes dynamics and wholeness as fundamental, instead of static parts that interact. Further, she suggests a mathematical description of this dynamics. Kinetic equations in classical Newtonian mechanics or in quantum theory make no distinction about whether time goes forward or backward. Dynamics, on the other hand, does, being based on wholeness. But Barbara Piechocinska can’t tell whether this is physically relevant or merely a mathematical construction.



“If this approach is elaborated further we will hopefully be able to answer that question. Because then we would see exactly what it predicts and could see whether the predictions square with reality. If it were to be shown that the extra bit is truly relevant in the physical world, then we would have good reason to reconsider our way of looking at the world and dethrone reductionism,” she says.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>