Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulation of single atoms provides fundamental insights

28.09.2005


It seemed like science-fiction just a few years ago, but is now common practice for scientists at the Paul Drude Institute for Solid State Electronics (PDI) in Berlin. The scientists manipulate single atoms resting on surfaces and assemble them into wires or tiny clusters. In the world of nanometric dimensions, fundamental material properties such as magnetism, electrical conductivity or chemical reactivity differ from the conventional behaviour observed in everyday life. If metal clusters or semiconductor crystals are made just tiny enough, effects often arise which can be only explained by the laws of quantum physics. Recently, a team of scientists at the PDI documented the transition of the quantum world characteristics of atomic structures to the world of macroscopic material properties. They assembled individual copper atoms on a crystalline copper surface and examined the electronic properties of these artificial structures. Jérôme Lagoute, Xi Liu and Stefan Fölsch published their study in the journal Physical Review Letters *.



The scientists assembled atomic clusters one atom high by manipulating one atom after another and found that, depending on the number of atoms, characteristic quantum states are formed which eventually merge into a widely known surface property, the Shockley surface state. This state can be described as an electron gas located at the surface. "The two-dimensional surface state is text book physics", says Stefan Fölsch, "but we found something new.” For the first time, Lagoute and colleagues revealed the physical linkage between quantum states in atomic-scale structures and the traditional properties of extended surfaces. The researchers conclude that their findings apply not only to copper but to other materials as well.

To manipulate the atoms and to analyze the assembled structures, the scientists used a home-built low temperature scanning tunneling microscope. “At present, few research groups world-wide are able to conduct atom manipulation experiments on this level”, says Fölsch. However, the method will not directly lead to new products or applications in the near future.“Our experiments are performed under very well-defined conditions at low temperature and on ultra-clean surfaces." Nevertheless, studies of suchlike perfect model systems yield fundamental insight which is essential for future developments in nanoscience and technology. “For instance, if you assemble a quantum wire atom by atom”, says Fölsch, “you’d like to know about the detailed electronic characteristics and the electron dynamics associated with this one-dimensional object." The present experiment by the PDI scientists provides an instructive approach to exploring how electronic properties evolve when building artificial structures atom by atom. A detailed understanding of such a scenario is an essential step towards the ultimate goal of “tailoring” magnetic and electronic material properties by controlling size, geometry, and composition at the atomic level.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>