Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulation of single atoms provides fundamental insights

28.09.2005


It seemed like science-fiction just a few years ago, but is now common practice for scientists at the Paul Drude Institute for Solid State Electronics (PDI) in Berlin. The scientists manipulate single atoms resting on surfaces and assemble them into wires or tiny clusters. In the world of nanometric dimensions, fundamental material properties such as magnetism, electrical conductivity or chemical reactivity differ from the conventional behaviour observed in everyday life. If metal clusters or semiconductor crystals are made just tiny enough, effects often arise which can be only explained by the laws of quantum physics. Recently, a team of scientists at the PDI documented the transition of the quantum world characteristics of atomic structures to the world of macroscopic material properties. They assembled individual copper atoms on a crystalline copper surface and examined the electronic properties of these artificial structures. Jérôme Lagoute, Xi Liu and Stefan Fölsch published their study in the journal Physical Review Letters *.



The scientists assembled atomic clusters one atom high by manipulating one atom after another and found that, depending on the number of atoms, characteristic quantum states are formed which eventually merge into a widely known surface property, the Shockley surface state. This state can be described as an electron gas located at the surface. "The two-dimensional surface state is text book physics", says Stefan Fölsch, "but we found something new.” For the first time, Lagoute and colleagues revealed the physical linkage between quantum states in atomic-scale structures and the traditional properties of extended surfaces. The researchers conclude that their findings apply not only to copper but to other materials as well.

To manipulate the atoms and to analyze the assembled structures, the scientists used a home-built low temperature scanning tunneling microscope. “At present, few research groups world-wide are able to conduct atom manipulation experiments on this level”, says Fölsch. However, the method will not directly lead to new products or applications in the near future.“Our experiments are performed under very well-defined conditions at low temperature and on ultra-clean surfaces." Nevertheless, studies of suchlike perfect model systems yield fundamental insight which is essential for future developments in nanoscience and technology. “For instance, if you assemble a quantum wire atom by atom”, says Fölsch, “you’d like to know about the detailed electronic characteristics and the electron dynamics associated with this one-dimensional object." The present experiment by the PDI scientists provides an instructive approach to exploring how electronic properties evolve when building artificial structures atom by atom. A detailed understanding of such a scenario is an essential step towards the ultimate goal of “tailoring” magnetic and electronic material properties by controlling size, geometry, and composition at the atomic level.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>