Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN receives prestigious Milestone recognition from IEEE

28.09.2005


At a ceremony last night at CERN*, Mr W. Cleon Anderson, President of the Institute of Electrical and Electronics Engineers (IEEE**) formally dedicated a Milestone plaque in recognition of the invention of electronic particle detectors at CERN. The plaque was unveiled by Mr Anderson and Georges Charpak, the Nobel-prize winning inventor of wire chamber technology at CERN in 1968.



With the attribution of this IEEE Milestone, CERN finds itself in good company. There are currently over 60 Milestones around the world, awarded to such momentous achievements as the landing of the first transatlantic cable, code breaking Bletchley Park during World War II, and the development of the Japanese Bullet train, the Tokaido Shinkansen.

“It has been my pleasure to have participated in the dedication of seven of these Milestones,” said Mr Anderson at the event, adding that all have brought important advances to humanity. “What is being done here at CERN,” he concluded, “is of benefit to the world.”


Particle physics research was revolutionised in 1968 when Georges Charpak published a paper describing the multi-wire proportional chamber, a forerunner to many of the particle detectors in use at CERN today. This invention paved the way for new discoveries in particle physics, as underlined by Swiss Secretary of State for Education and Research Charles Kleiber. “I am delighted that the IEEE has decided to award a key Milestone to CERN for the invention of the multi-wire proportional particle detector by Professor Charpak and his collaborators in 1968,” he said “These developments have led to crucial progress in our understanding of the constituents of nature.”

Charpak’s invention also made it possible to increase the rate of data collection by a factor of a thousand. The significance of this was underlined by Walter LeCroy, founder of the company that bears his name, who said that Charpak’s invention had “transformed the world of the electronics developer.” “The advent of electronic particle detectors,” he said, “brought the need to store, transmit and analyse data faster than ever before.” Many of the developers working for LeCroy are former particle physicists.

In 1992, Charpak, who had been working at CERN since 1959, received the Nobel Prize in physics for his invention. He has also actively contributed to the use of this new type of detector in various applications in medicine and biology. The value of fundamental research institutes such as CERN in fostering innovation of this kind was a recurring theme of the ceremony. “CERN’s reputation is based on fundamental research,” said the Laboratory’s Director General, Robert Aymar, “but the Organization is also an important source of new technologies. In our work we need instruments based more and more on electronics, so that a tight collaboration worldwide in this field is beneficial to science. In turn the developments in our science feed back into the equipment in industry and in the end they appear in your home.” The point was underlined by Charpak himself, who stressed the importance of intellectual freedom, saying of his time at the Laboratory, “CERN was a fantastic place because of the freedom I had, which permitted me to do a lot of things that were unexpected.”

Press Office | alfa
Further information:
http://www.cern.ch/Press

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>