Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CERN receives prestigious Milestone recognition from IEEE


At a ceremony last night at CERN*, Mr W. Cleon Anderson, President of the Institute of Electrical and Electronics Engineers (IEEE**) formally dedicated a Milestone plaque in recognition of the invention of electronic particle detectors at CERN. The plaque was unveiled by Mr Anderson and Georges Charpak, the Nobel-prize winning inventor of wire chamber technology at CERN in 1968.

With the attribution of this IEEE Milestone, CERN finds itself in good company. There are currently over 60 Milestones around the world, awarded to such momentous achievements as the landing of the first transatlantic cable, code breaking Bletchley Park during World War II, and the development of the Japanese Bullet train, the Tokaido Shinkansen.

“It has been my pleasure to have participated in the dedication of seven of these Milestones,” said Mr Anderson at the event, adding that all have brought important advances to humanity. “What is being done here at CERN,” he concluded, “is of benefit to the world.”

Particle physics research was revolutionised in 1968 when Georges Charpak published a paper describing the multi-wire proportional chamber, a forerunner to many of the particle detectors in use at CERN today. This invention paved the way for new discoveries in particle physics, as underlined by Swiss Secretary of State for Education and Research Charles Kleiber. “I am delighted that the IEEE has decided to award a key Milestone to CERN for the invention of the multi-wire proportional particle detector by Professor Charpak and his collaborators in 1968,” he said “These developments have led to crucial progress in our understanding of the constituents of nature.”

Charpak’s invention also made it possible to increase the rate of data collection by a factor of a thousand. The significance of this was underlined by Walter LeCroy, founder of the company that bears his name, who said that Charpak’s invention had “transformed the world of the electronics developer.” “The advent of electronic particle detectors,” he said, “brought the need to store, transmit and analyse data faster than ever before.” Many of the developers working for LeCroy are former particle physicists.

In 1992, Charpak, who had been working at CERN since 1959, received the Nobel Prize in physics for his invention. He has also actively contributed to the use of this new type of detector in various applications in medicine and biology. The value of fundamental research institutes such as CERN in fostering innovation of this kind was a recurring theme of the ceremony. “CERN’s reputation is based on fundamental research,” said the Laboratory’s Director General, Robert Aymar, “but the Organization is also an important source of new technologies. In our work we need instruments based more and more on electronics, so that a tight collaboration worldwide in this field is beneficial to science. In turn the developments in our science feed back into the equipment in industry and in the end they appear in your home.” The point was underlined by Charpak himself, who stressed the importance of intellectual freedom, saying of his time at the Laboratory, “CERN was a fantastic place because of the freedom I had, which permitted me to do a lot of things that were unexpected.”

Press Office | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>