Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deflecting asteroids could lead to more versatile spaceprobes

28.09.2005


The UK’s first engineering feasibility study into missions for deflecting asteroids has begun.



The Engineering and Physical Sciences Research Council (EPSRC) is funding a new three-year study into interception and deflection strategies for asteroids found to be on a collision course with Earth. Although there have been similar studies in the past, Dr Gianmarco Radice, department of Aerospace Engineering, University of Glasgow, and Professor Colin McInnes, department of Mechanical Engineering, University of Strathclyde, are approaching the subject in a new way.

“We will be looking at this as engineers. So we want to investigate the practicality of different deflection strategies,” says McInnes. In other words, it is no use having a brilliant deflection scheme if no one can build it with current technology.


Although Hollywood blockbusters have popularised the idea of using nuclear weapons to blow up asteroids, the study will investigate more realistic alternatives such as space mirrors. These would be angled to focus sunlight onto the incoming object. The intense heat would boil away a section of the asteroid, creating a natural rocket that pushes the asteroid in the opposite direction. The study will also look into high-speed collisions to literally knock an asteroid out of the way using no explosives, just a ‘battering ram’ spacecraft.

Asteroids have widely differing compositions, ranging from pure rock or even metal to ice and snow. Knowing what an asteroid is made from, and therefore its likely strength, is the crucial first step in determining the best way to divert it without shattering it. “One of the main objectives of this study is to try to associate a particular deflection strategy with a particular type of asteroid that has to be deviated,” says Radice.

The internal arrangement of Near Earth Objects (NEOs) can critically affect the deviation strategy. Some asteroids, known as rubble piles, are not solid slabs of rock but loose assemblages. Slamming an object into a rubble pile would not be very effective in altering its course, because the rubble would absorb the energy of impact rather like a crumple zone on a car absorbs a crash. Instead, scenarios which melt part of the surface, such as space mirrors, producing jets of gas that gradually ease the object into a new orbit, are favoured.

Yet this is about more than just diverting asteroids, no matter how critical that need may one day become. The biggest part of the study concerns how to intercept such targets. In conventional space exploration, everything is precisely worked out beforehand and targets are chosen that have well-known orbits. That’s how NASA recently bulls-eyed comet Tempel 1 with its Deep Impact mission.

However, a dangerous object is likely to be newly discovered and that means its orbit will be poorly known. “We’d probably have to launch a deflection mission without a clear idea of where we’re aiming,” says McInnes. So, the study will seek to find the best strategies for launching space missions into approximate intercept orbits that can be adjusted later.

To do this, it will investigate the additional fuel that such a spacecraft would require. Because fuel is heavy, spacecraft are traditionally designed to carry little extra. That will have to change with this new approach to space exploration.

Such seat-of-the-pants flying could result in more versatile spacecraft across the board. These would be better able to respond to a variety of unexpected situations. As well as fuel considerations, the team will investigate ‘general purpose’ orbits and flexible navigation strategies that keep a spacecraft’s options open for longer, before committing it to a final destination.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>