Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deflecting asteroids could lead to more versatile spaceprobes

28.09.2005


The UK’s first engineering feasibility study into missions for deflecting asteroids has begun.



The Engineering and Physical Sciences Research Council (EPSRC) is funding a new three-year study into interception and deflection strategies for asteroids found to be on a collision course with Earth. Although there have been similar studies in the past, Dr Gianmarco Radice, department of Aerospace Engineering, University of Glasgow, and Professor Colin McInnes, department of Mechanical Engineering, University of Strathclyde, are approaching the subject in a new way.

“We will be looking at this as engineers. So we want to investigate the practicality of different deflection strategies,” says McInnes. In other words, it is no use having a brilliant deflection scheme if no one can build it with current technology.


Although Hollywood blockbusters have popularised the idea of using nuclear weapons to blow up asteroids, the study will investigate more realistic alternatives such as space mirrors. These would be angled to focus sunlight onto the incoming object. The intense heat would boil away a section of the asteroid, creating a natural rocket that pushes the asteroid in the opposite direction. The study will also look into high-speed collisions to literally knock an asteroid out of the way using no explosives, just a ‘battering ram’ spacecraft.

Asteroids have widely differing compositions, ranging from pure rock or even metal to ice and snow. Knowing what an asteroid is made from, and therefore its likely strength, is the crucial first step in determining the best way to divert it without shattering it. “One of the main objectives of this study is to try to associate a particular deflection strategy with a particular type of asteroid that has to be deviated,” says Radice.

The internal arrangement of Near Earth Objects (NEOs) can critically affect the deviation strategy. Some asteroids, known as rubble piles, are not solid slabs of rock but loose assemblages. Slamming an object into a rubble pile would not be very effective in altering its course, because the rubble would absorb the energy of impact rather like a crumple zone on a car absorbs a crash. Instead, scenarios which melt part of the surface, such as space mirrors, producing jets of gas that gradually ease the object into a new orbit, are favoured.

Yet this is about more than just diverting asteroids, no matter how critical that need may one day become. The biggest part of the study concerns how to intercept such targets. In conventional space exploration, everything is precisely worked out beforehand and targets are chosen that have well-known orbits. That’s how NASA recently bulls-eyed comet Tempel 1 with its Deep Impact mission.

However, a dangerous object is likely to be newly discovered and that means its orbit will be poorly known. “We’d probably have to launch a deflection mission without a clear idea of where we’re aiming,” says McInnes. So, the study will seek to find the best strategies for launching space missions into approximate intercept orbits that can be adjusted later.

To do this, it will investigate the additional fuel that such a spacecraft would require. Because fuel is heavy, spacecraft are traditionally designed to carry little extra. That will have to change with this new approach to space exploration.

Such seat-of-the-pants flying could result in more versatile spacecraft across the board. These would be better able to respond to a variety of unexpected situations. As well as fuel considerations, the team will investigate ‘general purpose’ orbits and flexible navigation strategies that keep a spacecraft’s options open for longer, before committing it to a final destination.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>