Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule Walks Like a Human

27.09.2005


Using linkers for feet (shown in red), the molecule "9,10-dithioanthracene" moves in a straight line on a flat surface, such as a copper sheet shown here, by mimicking a human walking. Photo credit: L. Bartels.


Moving one step at a time, newly designed molecule walks in a straight line; potential applications in molecular computing

A research team, led by UC Riverside’s Ludwig Bartels, is the first to design a molecule that can move in a straight line on a flat surface. It achieves this by closely mimicking human walking. The “nano-walker” offers a new approach for storing large amounts of information on a tiny chip and demonstrates that concepts from the world we live in can be duplicated at the nanometer scale – the scale of atoms and molecules.

The molecule – 9,10-dithioanthracene or “DTA” – has two linkers that act as feet. Obtaining its energy from heat supplied to it, the molecule moves such that only one of the linkers is lifted from the surface; the remaining linker guides the motion of the molecule and keeps it on course. Alternating the motions of its two “feet,” DTA is able to walk in a straight line without the assistance of nano-rails or nano-grooves for guidance.



The researchers will publish their work in next month’s issue of Physical Review Letters.

“Similar to a human walking, where one foot is kept on the ground while the other moves forward and propels the body, our molecule always has one linker on a flat surface, which prevents the molecule from stumbling to the side or veering off course,” said Bartels, assistant professor of chemistry and a member of UCR’s Center for Nanoscale Science and Engineering. “In tests, DTA took more than 10,000 steps without losing its balance once. Our work proves that molecules can be designed deliberately to perform certain dynamic tasks on surfaces.”

Bartels explained that, ordinarily, molecules move in every unpredictable direction when supplied with thermal energy. “DTA only moves along one line, however, and retains this property even if pushed or pulled aside with a fine probe.” Bartels said. “This offers an easy realization of a concept for molecular computing proposed by IBM in the 1990s, in which every number is encoded by the position of molecules along a line similar to an abacus, but about 10 million times smaller. IBM abandoned this concept, partly because there was no way to manufacture the bars of the abacus at molecule-sized spacing.

“DTA does not need any bars to move in a straight line and, hence, would allow a much simpler way of creating such molecular memory, which would be more than 1000 times more compact than current devices.”

The UCR research team is now trying to build a molecular ratchet, which would convert random thermal oscillation into directed motion. “It would be similar to an automatic watch that rewinds itself on the arm of the bearer – except that it would be just one nanometer in diameter,” Bartels said.

A nanometer is one billionth of a meter. A nanometer is to a meter what an inch is to 15,783 miles, more than half the distance around the Earth’s equator.

Bartels was assisted in the study by Ki-Young Kwon, Kin L. Wong and Greg Pawin of UCR; and Sergey Stolbov and Talat S. Rahman of Kansas State University. The US Department of Energy funded the research. Additional support came from the Petroleum Research Fund and the Air Force Office of Scientific Research. The San Diego Supercomputer Center provided computational resources.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>