Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Room-temperature transistor laser is step closer to commercialization

27.09.2005


Researchers at the University of Illinois at Urbana-Champaign have demonstrated the room-temperature operation of a heterojunction bipolar transistor laser, moving it an important step closer to commercialization. The scientists describe their work in the Sept. 26 issue of the journal Applied Physics Letters.



"We have shown that the transistor laser, even in its early state of development, is capable of room-temperature operation at a speed of 3 gigahertz," said Nick Holonyak Jr., a John Bardeen Chair Professor of Electrical and Computer Engineering and Physics at Illinois. "We expect the device will operate at much higher speeds when it is more fully developed, as well as play an important role in electronic-photonic integrated circuits."

Room-temperature transistor lasers "could facilitate faster signal processing, large capacity seamless communications, and higher performance electrical and optical integrated circuits," said Milton Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. Feng’s research on heterojunction bipolar transistors has produced the world’s fastest bipolar transistor, a device that operates at a frequency of 600 gigahertz or more, and is a natural platform on which to develop a transistor laser.


The Illinois researchers first reported the demonstration of a light-emitting transistor in the Jan. 5, 2004, issue of Applied Physics Letters. They described the first laser operation of the light-emitting transistor in the Nov. 15, 2004, issue of the same journal. At that time, the transistor laser had to be chilled with liquid nitrogen to minus 73 degrees Celsius.

Room-temperature operation is ultimately required for large-scale commercial applications, said Holonyak, who also is a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition. "If this device operated only at low temperature, nobody would want it, except as a laboratory curiosity or for very limited applications."

After the demonstration of the first semiconductor laser (as well as the first practical light-emitting diode) in 1962, "it took the effort of many people eight years to get the diode laser to operate at room temperature," Holonyak said. "Then it took an additional two years to make it reliable. But the big payoff has only now just begun, after more than 40 years of additional work."

In comparison, it has taken the Illinois researchers less than a year to move the transistor laser from cold operation to room-temperature operation. "Who knows where this new transistor laser technology will be in another 40 years," Holonyak said. "The payoff part of scientific and technological advances never occurs rapidly, at least not the ’big payoff.’

"The transistor laser is still a primitive, laboratory device that will require a lot more work," Holonyak said. "Eventually, optimizing the design and fabrication will result in higher speed laser operation and improved performance, as well as a naturally advantageous way to realize electronic-photonic integrated circuits."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>