Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bridges of Water: “Keep Cool to Reduce Friction,” Suggests a New Study of Nanoscale Water Condensation

26.09.2005


“Keep cool to reduce friction” might be the advice given to designers of nanoscale machinery by researchers who have just completed a study of factors influencing the formation of “water bridges” – capillary connections that can glue surfaces together, giving rise to friction forces.



When surfaces touch in a humid environment, moisture forms water bridges, or capillaries, between them. On familiar size scales, this process – known as nucleation – helps hold sand castles and wet concrete together, and is critical to the formation of clouds. But sometimes these structures can be less helpful, causing friction sufficient to slow or even stop nanoscale machinery – or in food processing, creating large clusters of sugar, salt, baby cereals or coffee.

By studying the frictional forces acting on an atomic force microscope (AFM) tip drawn across a glass surface, researchers at the Georgia Institute of Technology have demonstrated for the first time that the formation of these capillaries is thermally activated. Their study suggests that it may be possible to reduce the adhesion between surfaces by reducing temperatures and putting nanoscale surfaces into motion before the water bridges have time to form.


“When you move very slowly, there is time for a capillary to form at each tiny bump or asperity in the surface,” explained Elisa Riedo, an assistant professor in Georgia Tech’s School of Physics. “But when you move faster, you have fewer capillaries. If you go fast enough, the capillaries do not have time to form.”

Understanding the relationship between nucleation time and temperature could be crucial to the designers of very small devices that must operate in the presence of moisture, as well as to the food processing industry. “Since formation of the capillaries affects friction and adhesion between particles, if we understand this relationship, we can understand how small particles and nano-surfaces glue together,” she noted.

A report on the research, which has been sponsored by the National Science Foundation and the Petroleum Foundation, was published in the journal Physical Review Letters on September 23rd.

Experimentally, Riedo and her postdoctoral collaborator Robert Szoszkiewicz used an AFM with specially-crafted ball-shaped tips that had diameters ranging from 40 to 100 nanometers. That provided a multi-contact area of approximately 30 square nanometers.

While maintaining a constant humidity of about 40 percent, they moved the tip across a slightly rough glass surface that had irregularities approximately one nanometer high. While the tip was moving, they recorded the resistance to motion – measured in piconewtons or nanonewtons – while varying the temperature and velocity.

By charting their data, they saw evidence that the friction measured was directly related to temperature, suggesting the growth of capillary structures increases as temperature increases.

“The more energetic the water molecules are, the more likely it is that they will form capillaries,” said Szoszkiewicz. “We found that nucleation times grow exponentially with the inverse of temperature.”

The researchers found that the nucleation times of nanoscopic capillaries increased from 0.7 milliseconds to 4.2 milliseconds when the temperature decreased from 332 to 299 degrees Kelvin – which is approximately room temperature.

“To form water bridges, molecules need to overcome an energy barrier. The thermal energy can provide the energy they need, however, it takes time for these bridges to form,” Riedo noted. “The longer the surfaces are together, the stronger the contact will be because more bridges can form.”

When surfaces come close together, several processes can occur, Szoszkiewicz said. After contact, moisture naturally adsorbed on the surfaces – along with water molecules from the air – will concentrate close to the true contact point because of diffusion. Some initial water bridges will then form between contacting asperities.

When objects move close together but don’t touch, a different process occurs. Moisture adsorbed on each surface may coalesce, and because of attractive forces, jump together, forming a water bridge. At a given temperature, this nucleation process will differ for each surface depending on its ability to adsorb moisture. Newly formed capillaries then act as water sinks, attracting more water molecules because pressure inside the capillary bridge is lower than the pressure outside it. The process continues to a point at which an equilibrium capillary bridge is formed.

“The question we considered was what would be the dominant phenomenon and what would be the time scale for both phenomena,” Szoszkiewicz said. “We have experimentally demonstrated that with nano-rough surfaces, nucleation will be dominant.”

Beyond applications to atmospheric science, the food industry and nanoscale sliding machinery, the findings suggest another way to control ink flow in dip-pen nanolithography. In that process, ink flowing from an AFM tip is used to write nanoscale patterns that could be useful in such processes as semiconductor lithography.

“In this case, you might use the temperature dependence to increase the velocity of the ink flow, decrease it, or make the flow improbable,” said Riedo. “There are a lot of implications for the technology. Each of the materials involved will have its own properties regarding velocity and how rapidly it forms capillary bridges.”

The researchers also measured the size of energy barrier required for water molecules to nucleate. “This energy was predicted by theoretical models using classical thermodynamics, and it matched really well with our experiments,” said Riedo.

The researchers hope the information they provide will help engineers deal with capillary forces in a more efficient way. Because water is ubiquitous, more information is needed about how it behaves at the nanoscale.

“Water is of crucial importance everywhere in our world – in biology, earth sciences, atmospheric sciences and industrial processes,” Riedo noted. “From a fundamental point of view, it is difficult to do theoretical models of water. But there is a huge interest in this from both theoretical and technological standpoints.”

John Toon | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>