Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Measure Tiny Force That Limits How Far Machines Can Shrink

26.09.2005


This simple sketch shows the placement of diffraction gratings - represented by the vertical dashed lines - that split and recombine atom waves. The gratings are about a meter apart.


University of Arizona physicists have directly measured how close speeding atoms can come to a surface before the atoms’ wavelengths change.

Theirs is a first, fundamental measurement that confirms the idea that the wave of a fast-moving atom shortens and lengthens depending on its distance from a surface, an idea first proposed by pioneering quantum physicists in the late 1920s.

The measurement tells nanotechnologists how small they can make extremely tiny devices before a microscopic force between atoms and surfaces, called van der Waals interaction, becomes a concern. The result is important both for nanotechnology, where the goal is to make devices as small as a few tens of billionths of a meter, and for atom optics, where the goal is to use the wave nature of atoms to make more precise sensors and study quantum mechanics.



UA optical sciences doctoral candidate John D. Perreault and UA assistant professor of physics Alexander D. Cronin report the experiment in the Sept. 23 Physical Review Letters. The paper is online at http://xxx.lanl.gov/PS_cache/physics/pdf/0505/0505160.pdf

Perreault and Cronin used a sophisticated device called an atom interferometer in making the measurement. Cronin brought the 12-foot-long device to UA from MIT three years ago. The atom interferometer was assembled over 15 years with more than $2 million in research grants from the National Science Foundation, the UA and the Research Corp. Now in Cronin’s laboratory on the third floor of the UA’s Physics and Atmospheric Sciences Building, the machine is one of only a half-dozen such instruments operating in the United States and Europe. It splits and recombines atom waves so that scientists can observe the position of the wave crests.

"Our research provides the first direct experimental evidence that a surface 25 nanometers away (25 billionths of a meter) causes a shift in the atom wave crests," Perreault said. "It shows that the van der Waals interaction may be a small scale force, but it’s a big deal for atoms."

Perreault and Cronin found that atoms closer than 25 nanometers to a surface are very strongly attracted to the surface because of the van der Waals interaction-- so strongly that the atoms are accelerated with the force of a million g’s.

A "g" is a term for acceleration due to gravity. One g is an everyday experience -- it’s the force a person feels from Earth’s gravity. A roller coaster rider might feel 3 to 4 g’s for brief moments during a ride. Fighter pilots can experience accelerations of up to 8 g for brief periods during tactical maneuvers, but can black out if subjected to 4 to 6 g’s for more than a few seconds.

"We might say that when an atom is between 10 and 20 nanometers from a surface, it gets sucked toward the surface with a force a million times its weight," Cronin said. "And when it gets closer, it gets pulled even harder."

The momentary acceleration of the atom as it passes by the surface is expressed in a famous equation which relates the speed of an atom to its wavelength, Cronin said. When atoms are accelerated and closer to the surface, their wavelengths become shorter. When farther from a surface, atoms return to their original wavelength. Perreault and Cronin used the atom interferometer to measure the wavelength shift.

Nanotechnology research aims to build much smaller transistors and motors, for example, than currently exist. Atom optics research aims to exploit the wave behavior of atoms in ways that will make more precise gyroscopes for navigation, gravity gradiometers for subterranean mapping and other field sensors.

"I think the impact of our work stems from the intersection of the fields of atom optics and nanotechnology," Perreault said. "It answers the question of how far you can miniaturize an atom optics device - for example, a device that guides atoms on a chip to form a very tiny interferometer - before this nano-interaction disrupts operations."

The idea that atoms behave as waves as well as particles goes back to 1924. They’re called "de Broglie waves" for early 20th-century French quantum physicist Prince Louis-Victor de Brogli, who first proposed the concept of atom waves. Scientists have grappled with the dual wave-particle nature of atoms for decades and, in the 1990s, they began chilling atoms to near absolute zero and studying the wave properties of atoms in detail.

Lori Stiles | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>