Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tycho’s Remnant Provides Shocking Evidence for Cosmic Rays

26.09.2005


Chandra X-ray Image of Tycho’s Supernova Remnant. Credit: NASA/CXC/Rutgers/J.Warren & J.Hughes et al.


Astronomers have found compelling evidence that a supernova shock wave has produced a large amount of cosmic rays, particles of mysterious origin that constantly bombard the Earth. This discovery, made with NASA’s Chandra X-ray Observatory, supports theoretical arguments that shock waves from stellar explosions may be a primary source of cosmic rays.

This finding is important for understanding the origin of cosmic rays, which are atomic nuclei that strike the Earth’s atmosphere with very high energies. Scientists believe that some are produced by flares on the Sun, and others by similar events on other stars, or pulsars or black hole accretion disks. But, one of the prime suspects has been supernova shock waves. Now, a team of astronomers has used Chandra observations of Tycho’s supernova remnant to strengthen the case for this explanation.

"With only a single object involved we can’t state with confidence that supernova shock waves are the primary source of cosmic rays," said John P. Hughes of Rutgers University in Piscataway, New Jersey, and coauthor of a report to be published in an upcoming issue of The Astrophysical Journal. "What we have done is present solid evidence that the shock wave in at least one supernova remnant has accelerated nuclei to cosmic ray energies."

In the year 1572, the Danish astronomer Tycho Brahe observed and studied the sudden appearance of a bright "new star" in the constellation Cassiopeia. Now known as Tycho’s supernova remnant, the event created a sensation in Tycho’s time because it exploded the myth that stars never change.



Four centuries later, the Chandra results on Tycho’s remnant show that some modern ideas of the aftermath of supernova explosions may have to be revised. The report by Hughes and colleagues demonstrates that the shock wave produced by the explosive disruption of the star behaves in a way that cannot be explained by the standard theory.

The supernova debris is observed to expand at a speed of about six million miles per hour. This rapid expansion has created two X-ray emitting shock waves - one moving outward into the interstellar gas, and another moving inward into the stellar debris. These shock waves, analogous to the sonic boom produced by supersonic motion of an airplanes, produce sudden, large changes in pressure, and temperature behind the wave.

According to the standard theory, the outward-moving shock should be about two light-years ahead of the stellar debris (that’s half the distance from our sun to the nearest star). What Chandra found instead is that the stellar debris has kept pace with the outer shock and is only about half a light-year behind.

"The most likely explanation for this behavior is that a large fraction of the energy of the outward-moving shock wave is going into the acceleration of atomic nuclei to speeds approaching the speed of light," said Jessica Warren, also of Rutgers University, and the lead author of the report in the Astrophysical Journal.

Previous observations with radio and X-ray telescopes had established that the shock wave in Tycho’s remnant was accelerating electrons to high energies. However, since high-speed atomic nuclei produce very weak radio and X-ray emission also, it was not known whether the shock wave was accelerating nuclei as well. The Chandra observations provide the strongest evidence yet that nuclei are indeed accelerated, and that the energy contained in high-speed nuclei is about 100 times that in the electrons.

Hughes also pointed out that the Chandra result for Tycho’s remnant significantly changes astronomers’ view of the evolution of supernova remnants. A large component of cosmic ray nuclei alters the dynamics of the shock wave, and may require changing the way that astronomers estimate the explosive energy of a supernova from the properties of its remnant.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency’s Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Megan Watzke | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>