Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Through the looking glass’ – the Universe at your computer

23.09.2005


Astronomers throughout the UK now have a valuable new research tool at their disposal which may lead to new discoveries and improved understanding of the physics of the Universe. Launched this week, AstroGrid provides a unique way of accessing, processing and storing astronomical data obtained from a diverse range of data archives held anywhere on Earth. AstroGrid will open the way for virtual observing on individual computers, enabling astronomers to compare and manipulate a wide range of astronomical data taken from both ground and space-based telescopes.



Astronomy is now in a golden age of discovery, with many new breakthroughs being made with the availability of high quality observations of the cosmos from major new observational facilities, such as the European Southern Observatory’s Very Large Telescope [VLT] in Chile and the European Space Agency’s XMM-Newton space-based observatory, which provide information across a wide range of the electro-magnetic spectrum from radio to visible light to gamma rays.’

The data taken from ground and space-based observations are held in separate archives and the challenge has been to provide the astronomer with the ability to bring these various pieces of data together, enabling them to understand the wider picture. For example one astronomer may survey the sky in the optical wavelengths, using the Sloan Digital Sky Survey, whilst another astronomer may analyse data from the XMM-Newton, each resulting in different answers. Only by comparing the two sets of data, or even adding another data set (e.g. Infrared data from Spitzer), can they then discover that certain previously insignificant faint objects seen in the optical are in fact distant galaxies harbouring massive black holes at their core.


Nic Walton, AstroGrid’s Project Scientist, said ’This first phase of the AstroGrid Virtual Observatory system represents a major milestone, unifying for the first time, the mass of astronomical data available to the astronomer, thus offering the potential to significantly increase the rate at which astronomers gain new insights into our Universe.

AstroGrid, the UK’s Virtual Observatory, will achieve this by providing a system that allows an astronomer to gain access to data not just from one telescope, but from all telescopes. AstroGrid makes use of the latest developments in distributed computing to enable the access and manipulation of large amounts of data (for example the whole sky imaged in one colour is 100 TB1. More importantly it implements standards that it has agreed with other partner projects across the globe (through the so called International Virtual Observatory Alliance) in order to ensure that data from any telescope can be described and understood by automated systems, thus making large scale analysis of the data on distributed computing systems much easier.

Andy Lawrence, the AstroGrid Project Leader from Edinburgh, said "When you browse the Web it feels like all the world’s web pages are sitting there inside your own computer. The idea of the Virtual Observatory is to achieve the same transparency for data and tools – astronomical databases and lots of analysis tools are spread all over the Internet, but they feel like they are inside your laptop, waiting to work with, and all speaking to each other. This is an ambitious vision, but with this first AstroGrid release it begins to look like a concrete reality".

The latest release of AstroGrid (http://www.astrogrid.org/release-v1.0) is now being used by a wide range of astronomers to address a number of astrophysical problems. For instance, the impact of our Sun’s solar eruptions on the Earth’s magnetosphere is being studied through the linkage of various models and data archives linked via AstroGrid. In another example, massive multi-wavelength data is being analysed in an attempt to reveal the star formation histories of the earliest galaxies.

Using AstroGrid an astronomer can request sets of observations of the same area of sky taken by several different telescopes and combine the data; perform the same analysis on all the data simply by setting up a set of commands in the AstroGrid system. Previously each data set would have to be processed individually, taking much longer to get results.

Professor Keith Mason, CEO of the Particle Physics and Astronomy Research Council, which funds AstroGrid, said `It is essential to compare and mix data from different sources in order to maximise the information we can glean from modern astronomical data. These tools will undoubtedly lead to new discoveries about the Universe that would have previously gone unnoticed.’

AstroGrid (http://www.astrogrid.org) is a consortium of Universities funded by the Particle Physics and Astronomy Research Council as part of its eScience programme with additional funding through the European Commission’s Framework 6 programme.

Julia Maddock | alfa
Further information:
http://www.astrogrid.org
http://www.allhands.org.uk
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>