Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case astronomers find vast stellar web spun by colliding galaxies

21.09.2005


Virgo image gives evidence of violent life, death of cluster galaxies

Case Western Reserve University astronomers have captured the deepest wide-field image ever of the nearby Virgo cluster of galaxies, directly revealing for the first time a vast, complex web of "intracluster starlight" -- nearly 1,000 times fainter than the dark night sky -- filling the space between the galaxies within the cluster. The streamers, plumes and cocoons that make up this extremely faint starlight are made of stars ripped out of galaxies as they collide with one another inside the cluster, and act as a sort of "archaeological record" of the violent lives of cluster galaxies.

The Virgo image was captured through Case’s newly refurbished 24-inch Burrell Schmidt telescope, built in the 1930s and located at the Kitt Peak National Observatory in Arizona. Over the course of 14 dark moonless nights, the researchers took more than 70 images of the Virgo Cluster, then used advanced image processing techniques to combine the individual images into a single image capable of showing the faint intracluster light.

"When we saw all this very faint starlight in the image, my first reaction was WOW!," project leader Chris Mihos said. "Then I began to worry about all the things we could have done wrong." Many effects, such as stray light from nearby stars, from instruments in the observatory and even from the changing brightness of the night sky could all contaminate the image and lead to inaccurate results. "But as we corrected for each of these contaminants, not only did the faint starlight not disappear, it became even more apparent. That’s when we knew we had something big."

The new image gives dramatic evidence of the violent life and death of cluster galaxies. Drawn together into giant clusters over the course of cosmic time by their mutual gravity, galaxies careen around in the cluster, smashing into other galaxies, being stripped apart by gravitational forces and even being cannibalized by the massive galaxies which sit at the cluster’s heart. The force of these encounters literally pulls many galaxies apart, leaving behind ghostly streams of stars adrift in the cluster, a faint tribute to the violence of cluster life.

"From computer simulations, we’ve long suspected this web of intracluster starlight should be there," says Mihos, associate professor of astronomy at Case, "but it’s been extremely hard to map it out because it’s so faint." Mihos and graduate students Craig Rudick (Case) and Cameron McBride (University of Pittsburgh, and former Case undergraduate) have developed computer simulations that track how clusters of galaxies evolve over time, to study exactly how this intracluster starlight is created.

"With the data from the telescope, we see how a cluster looks today," Mihos explains. "But with computer simulations, we can watch how a cluster evolves over 10 billion years of time. By comparing the simulation to the real features we now see in Virgo, we can learn how the cluster formed and what happened to its many galaxies." For example, the fact that the intracluster light in Virgo is so complex and irregular lends credence to the theory of "hierarchical assembly," where clusters grow sporadically when groups of galaxies fall into the cluster, rather than through the smooth, slow addition of galaxies one by one.

To detect the faint intracluster light, upgrades were needed to Case’s Burrell Schmidt telescope, originally part of the original Warner and Swasey Observatory in Cleveland until its move to Kitt Peak in 1979. The improvements included the installation of a new camera system and upgrades to the telescope to make it more structurally stable and reduce unwanted scattered light.

"It’s like ’The Little Engine that Could’," says Case astronomer Paul Harding, who directed the refurbishment of the telescope. "It’s the smallest telescope on the mountain, but with these upgrades it’s capable of some pretty incredible science." The telescope’s wide field of view -- enough to fit three full moons across the image -- proved crucial to the project, allowing the team to map out the intracluster light over a much larger part of the Virgo Cluster than would be possible using larger telescopes with their much smaller fields of view.

The Virgo Cluster of galaxies -- so named because it appears in the constellation of Virgo -- is the nearest galaxy cluster to the Earth, at a distance of approximately 50 million light years. The cluster contains more than 2,000 galaxies, the brightest of which can be seen with the aide of a small telescope.

The Case findings are reported in the paper "Diffuse Light in the Virgo Cluster" to be published in the September 20th issue of The Astrophysical Journal Letters. Along with Mihos team researchers included Case astronomers Heather Morrison and Paul Harding, and John Feldmeier, a National Science Foundation Fellow at the National Optical Astronomy Observatory in Tucson, Ariz. (and formerly of Case).

The wide-field image of the Virgo Cluster, along with movies of computer simulations of galaxies and galaxy clusters, can be found at http://astroweb.case.edu/hos/Virgo.

For more information, contact: Chris Mihos, department of astronomy at Case Western Reserve University at 216-368-3729 or by e-mail at mihos@case.edu.

Susan Griffith | EurekAlert!
Further information:
http://astroweb.case.edu/hos/Virgo/
http://www.case.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>