Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop life-saving chrome

21.09.2005


British scientists develop new way of using chrome that doesn’t put workers’ lives at risk



British scientists have developed a safer and more versatile alternative to chrome electroplating, the coating found on vintage car bumpers, steel camshafts, and fixtures such as door furniture and light fittings.

Chrome electroplating protects from corrosion and adds an aesthetically pleasing sheen, but chromium comes with serious health risks and chromium compounds have been shown to cause cancer.


Speaking at an Institute of Physics conference in Chester, UK, Professor Robert Akid warns that workers are being exposed to chromium compounds that are potentially cancer-causing and says that a safer alternative is much needed. He told the conference, Novel Applications of Surface Modification, organized by the Applied Physics and Technology Division of the Institute of Physics, that he and his colleagues are developing an alternative that will not only be safer but cuts down on costs by reducing the numerous processing stages associated with conventional electroplating.

Professor Akid, who is Head of the Structural Materials & Integrity Research Centre at Sheffield Hallam University, is developing a so-called "sol-gel technology" which is a colloid with nanoparticles in a solvent that can form a gel. A metal object is sprayed with or dipped into the sol-gel system and it quickly forms a gel-like layer on the object’s surface. The solvent is then removed by evaporation and the coating cured, or hardened. Akid says that the sol-gel approach can be used to coat a wider range of metals than electroplating methods.

Professor Akid said: "These inorganic-organic hybrid coatings have the potential to become an effective method of producing an alternative low-cost anti-corrosion or functional coating. The technology can be formulated and cured to give highly corrosion resistant, ceramic-based coatings. The method uses a range of cure temperatures and coatings are cured rapidly. The chemistry of the formulations has also been developed to provide sol-gel solutions that have a good shelf life."

There are technical issues yet to be addressed by the Sheffied team, however. For instance, a pre-requisite for such anticorrosion coatings on metals, such as aluminium and other metal surfaces, including zinc, stainless steel, and magnesium, is that they should be sufficiently thick, to give adequate lifetime and hard enough to be protected from scratching and abrasion.

Until now, sol-gel derived layers can be formed only up to two or three hundred nanometers in thickness with a single-dip. Akid explains that double dipping to produce multiple coatings is possible but this has the potential drawback of a reduction in coating properties.

Akid said: "The new type of protective coatings not only have high corrosion resistance and don’t easily release their constituent ions into the environment, but are also non-toxic." Akid and his colleagues have used sol-gel mixtures that produce aluminium oxide and silicon oxide coatings with a chemical component that allows them to bind to the metal component’s surface.

The team’s preliminary corrosion tests, including so-called potentiodynamic polarisation in which an electric current is used to induce corrosion showed that the coating possesses excellent corrosion resistance properties compared with uncoated samples and other pre-treatments. The researchers have also carried out mechanical tests and have shown with a simple scratch and bend tests that the coatings exhibit very good adhesion to the substrate.

As a further test of the durability of the coating, the researchers also immersed coated components in an exfoliation solution consisting of nitric acid and chloride with very high acidity, pH1. This simulates the kind of corrosion that aluminium alloy aerospace components might experience, albeit an accelerated test. Akid explained that their test results compared well with similar tests on bare and chromic acid anodised samples. The sol-gel hybrid coating showed little attack even after almost 200 hours immersion. The chromic acid anodised components were pitted after this time and so failed the test, while the bare simple was extremely corroded. The team used scanning electron microscopy (SEM) to identify the nature of the attack, general or localised corrosion.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>