Star eats companion

In the scenario proposed by the astrophysicists, the gas from the companion star is channeled along the magnetic field lines until it slams into the pulsar magnetic poles. This gas, heated to extreme temperatures, produces high-energy photons. These photons, emitted periodically at the pulsar rotation frequency, are detected by the INTEGRAL satellite. Additional observations by NASA’s Rossi X-ray Timing Explorer show that during the cannibalization of the companion star, the pulsar spins faster and faster. The star’s matter, attracted by the very strong pulsar gravitational field, supplies the energy needed to accelerate the pulsar rotation.

This binary pulsar, known as IGR J00291+5934, was discovered thanks to the INTEGRAL’s sensitive detectors, during a routine scan of the Milky Way on 2004, December 2. Follow-up observations with the Rossi X-ray Timing Explorer satellite, designed to study rapid time variations, fund the pulsar period to be very fast, with a revolution every 1.67 milliseconds. The low mass companion star was founded to be approximately 40 times the Jupiter mass with an orbital period around 2.5 hours.

This fast-spinning pulsar is the first discovered by INTEGRAL and the fastest of a six members family. These observations back up the hypothesis that fast-spinning isolated pulsars are the consequence of this absorption process.

Media Contact

Célie Simeray alfa

More Information:

http://www.cea.fr

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors