Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice researchers gain new insight into nanoscale optics

15.09.2005


Findings may lead to advances in on-chip data transmission



New research from Rice University has demonstrated an important analogy between electronics and optics that will enable light waves to be coupled efficiently to nanoscale structures and devices.

The research is available online from the journal Nano Letters and will appear in an upcoming print edition.


"We’ve discovered a universal relationship between the behavior of light and electrons," said study co-author Peter Nordlander, professor of physics and astronomy and of electrical and computer engineering. "We believe the relationship can be exploited to create nanoscale antennae that convert light into broadband electrical signals capable of carrying approximately 1 million times more data than existing interconnects."

Both light and electrons share similar properties, at times behaving like waves, at other times like particles. Many interesting solid-state phenomena, such as the scattering of atoms off surfaces and the behavior of quantum devices, can be understood as wavelike electrons interacting with discrete, localized electrons. Now, Rice researchers have discovered and demonstrated a simple geometry where light behaves exactly as electrons do in these systems.

In recent years there has been intense interest in developing ways to guide and manipulate light at dimensions much smaller than optical wavelengths. Metals like gold and silver have ideal properties to accomplish this task. Special types of light-like waves, called plasmons, can be transmitted along the surfaces of metals in much the same way as light in conventional optical fibers.

When small metallic nanoparticles are positioned on the metal film, they behave like tiny antennae that can transmit or receive light; it is this behavior that has been found to mimic that of electrons. Until now, the coupling of light waves into extended nanoscale structures has been poorly understood.

Nordlander’s research was conducted under the auspices of Rice’s Laboratory for Nanophotonics (LANP), a multidisciplinary group that studies the interactions of light with nanoscale particles and structures. The study was co-authored by LANP Director Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry.The findings stem from a relatively new area of research called plasmonics, which is a major LANP research thrust.

In the latest research, Halas’ graduate student Nyein Lwin placed a tiny sphere of gold -- measuring about 50 nanometers in diameter, within just a few nanometers of a thin gold film. When a light excited a plasmon in the nanosphere, this plasmon was converted into a plasmon wave on the film, for certain specific film thicknesses.

The experiments confirmed theoretical work by Nordlander’s graduate student Fei Le, who showed that the interactions between thin-film surface plasmons and the plasmons of nearby nanoparticles were equivalent to the "standard impurity problem," a well-characterized phenomenon that condensed matter physicists have studied for more than four decades.

Other co-authors on the paper include Halas’s graduate student Jennifer Steele, now a Professor at Trinity University, and former Texas Instruments Visiting Professor Mikael Käll of Chalmers University of Technology in Gothenburg, Sweden.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>