Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers build world’s smallest mobile robot

15.09.2005


In a world where "supersize" has entered the lexicon, there are some things getting smaller, like cell phones and laptops. Dartmouth researchers have contributed to the miniaturizing trend by creating the world’s smallest untethered, controllable robot. Their extremely tiny machine is about as wide as a strand of human hair, and half the length of the period at the end of this sentence. About 200 of these could march in a line across the top of a plain M&M. View images of the microrobot: www.dartmouth.edu/~news/releases/2005/09/14a.html



The researchers, led by Bruce Donald, the Joan P. and Edward J. Foley Jr. 1933 Professor of Computer Science at Dartmouth, report their creation in a paper that will be presented at the 12th International Symposium of Robotics Research in October in San Francisco, which is sponsored by the International Federation of Robotics Research. A longer, more detailed paper about this microrobot will also appear in a forthcoming issue of the Journal of Microelectromechanical Systems, a publication of the IEEE, the Institute of Electrical and Electronics Engineers.

"It’s tens of times smaller in length, and thousands of times smaller in mass than previous untethered microrobots that are controllable," says Donald. "When we say ’controllable,’ it means it’s like a car; you can steer it anywhere on a flat surface, and drive it wherever you want to go. It doesn’t drive on wheels, but crawls like a silicon inchworm, making tens of thousands of 10-nanometer steps every second. It turns by putting a silicon ’foot’ out and pivoting like a motorcyclist skidding around a tight turn."


The future applications for micro-electromechanical systems, or MEMS, include ensuring information security, such as assisting with network authentication and authorization; inspecting and making repairs to an integrated circuit; exploring hazardous environments, perhaps after a hazardous chemical explosion; or involving biotechnology, say to manipulate cells or tissues.

Donald worked with Christopher Levey, Assistant Professor of Engineering and the Director of the Microengineering Laboratory at Dartmouth’s Thayer School of Engineering, Dartmouth Ph.D. students Craig McGray and Igor Paprotny, and Daniela Rus, Associate Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.

Their paper describes a machine that measures 60 micrometers by 250 micrometers (one micrometer is one thousandth of a millimeter). It integrates power delivery, locomotion, communication, and a controllable steering system - the combination of which has never been achieved before in a machine this small. Donald explains that this discovery ushers in a new generation of even tinier microrobots.

McGray, who earned a Ph.D. in Computer Science working on this project in Donald’s lab, adds, "Machines this small tend to stick to everything they touch, the way the sand sticks to your feet after a day at the beach. So we built these microrobots without any wheels or hinged joints, which must slide smoothly on their bearings. Instead, these robots move by bending their bodies like caterpillars. At very small scales, this machine is surprisingly fast." McGray is currently a researcher at the National Institute of Standards and Technology in Gaithersburg, Md.

The prototype is steerable and untethered, meaning that it can move freely on a surface without the wires or rails that constrained the motion of previously developed microrobots. Donald explains that this is the smallest robot that transduces force, is untethered, and is engaged in its own locomotion. The robot contains two independent microactuators, one for forward motion and one for turning. It’s not pre-programmed to move; it is teleoperated, powered by the grid of electrodes it walks on. The charge in the electrodes not only provides power, it also supplies the robot’s instructions that allow it to move freely over the electrodes, unattached to them.

The work was funded in part by the Department of Homeland Security, Office of Domestic Preparedness through Dartmouth’s Institute for Security Technology Studies (ISTS).

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Physics and Astronomy:

nachricht Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles
24.04.2015 | Korea Advanced Institute of Science and Technology

nachricht Tau Ceti: The next Earth? Probably not
23.04.2015 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>