Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers build world’s smallest mobile robot

15.09.2005


In a world where "supersize" has entered the lexicon, there are some things getting smaller, like cell phones and laptops. Dartmouth researchers have contributed to the miniaturizing trend by creating the world’s smallest untethered, controllable robot. Their extremely tiny machine is about as wide as a strand of human hair, and half the length of the period at the end of this sentence. About 200 of these could march in a line across the top of a plain M&M. View images of the microrobot: www.dartmouth.edu/~news/releases/2005/09/14a.html



The researchers, led by Bruce Donald, the Joan P. and Edward J. Foley Jr. 1933 Professor of Computer Science at Dartmouth, report their creation in a paper that will be presented at the 12th International Symposium of Robotics Research in October in San Francisco, which is sponsored by the International Federation of Robotics Research. A longer, more detailed paper about this microrobot will also appear in a forthcoming issue of the Journal of Microelectromechanical Systems, a publication of the IEEE, the Institute of Electrical and Electronics Engineers.

"It’s tens of times smaller in length, and thousands of times smaller in mass than previous untethered microrobots that are controllable," says Donald. "When we say ’controllable,’ it means it’s like a car; you can steer it anywhere on a flat surface, and drive it wherever you want to go. It doesn’t drive on wheels, but crawls like a silicon inchworm, making tens of thousands of 10-nanometer steps every second. It turns by putting a silicon ’foot’ out and pivoting like a motorcyclist skidding around a tight turn."


The future applications for micro-electromechanical systems, or MEMS, include ensuring information security, such as assisting with network authentication and authorization; inspecting and making repairs to an integrated circuit; exploring hazardous environments, perhaps after a hazardous chemical explosion; or involving biotechnology, say to manipulate cells or tissues.

Donald worked with Christopher Levey, Assistant Professor of Engineering and the Director of the Microengineering Laboratory at Dartmouth’s Thayer School of Engineering, Dartmouth Ph.D. students Craig McGray and Igor Paprotny, and Daniela Rus, Associate Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.

Their paper describes a machine that measures 60 micrometers by 250 micrometers (one micrometer is one thousandth of a millimeter). It integrates power delivery, locomotion, communication, and a controllable steering system - the combination of which has never been achieved before in a machine this small. Donald explains that this discovery ushers in a new generation of even tinier microrobots.

McGray, who earned a Ph.D. in Computer Science working on this project in Donald’s lab, adds, "Machines this small tend to stick to everything they touch, the way the sand sticks to your feet after a day at the beach. So we built these microrobots without any wheels or hinged joints, which must slide smoothly on their bearings. Instead, these robots move by bending their bodies like caterpillars. At very small scales, this machine is surprisingly fast." McGray is currently a researcher at the National Institute of Standards and Technology in Gaithersburg, Md.

The prototype is steerable and untethered, meaning that it can move freely on a surface without the wires or rails that constrained the motion of previously developed microrobots. Donald explains that this is the smallest robot that transduces force, is untethered, and is engaged in its own locomotion. The robot contains two independent microactuators, one for forward motion and one for turning. It’s not pre-programmed to move; it is teleoperated, powered by the grid of electrodes it walks on. The charge in the electrodes not only provides power, it also supplies the robot’s instructions that allow it to move freely over the electrodes, unattached to them.

The work was funded in part by the Department of Homeland Security, Office of Domestic Preparedness through Dartmouth’s Institute for Security Technology Studies (ISTS).

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Physics and Astronomy:

nachricht The Dawn of DUNE
30.03.2015 | Fermi National Accelerator Laboratory (Fermilab)

nachricht NASA's Hubble and Chandra Discover Dark Matter Is Not as Sticky as Once Thought
30.03.2015 | Space Telescope Science Institute (STScI)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

BLS Cargo orders 15 multisystem locomotives

30.03.2015 | Press release

Shark Tagged by NSU’s Guy Harvey Research Institute Is Apparently Enjoying Time in Warm, Tropical Waters

30.03.2015 | Life Sciences

Antarctic Ice Shelves Rapidly Thinning

30.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>