Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black hole in search of a home

15.09.2005


The detection of a super massive black hole without a massive host galaxy is the surprising result from a large Hubble and VLT study of quasars. This is the first convincing discovery of such an object. One intriguing explanation is that the host galaxy may be made almost exclusively of dark matter.


No-host quasar compared with a normal quasar This figure shows two Hubble images of quasars from a sample of 20 relatively nearby quasars examined by a team of European astronomers two of the most powerful astronomical facilities available, the NASA/ESA Hubble Space Telescope and the ESO Very Large Telescope (VLT) at Cerro Paranal. The team confidently concludes that the quasar on the left, HE0450-2958 (in the centre, distance about 5 billion light-years) does not have a massive host galaxy. The quasar HE1239-2426 to the right (at a distance of 1.5 million light-years), has a normal host galaxy which displays large spiral arms. Although HE1239-2426 is much closer than HE0450-2958, the host galaxy of the latter would still be perfectly visible if it was as bright as the one of HE1239-2426. The lack of a prominent host galaxy around a very bright quasar (HE0450-2958) suggests a rare case of a collision between a seemingly normal spiral galaxy and an exotic object harbouring a very massive black hole. Also seen in the image to the left (above the quasar) is a strongly disturbed galaxy, showing all the signs of a recent collision. The VLT observations show it to be forming stars at a frantic rate. Below the quasar a foreground star is seen. The two images have been scaled to exhibit the same linear scale. The images were taken with the Advanced Camera for Surveys onboard the NASA/ESA Hubble Space Telescope. Image credit: NASA/ESA, ESO, Frédéric Courbin (Ecole Polytechnique Federale de Lausanne, Switzerland) & Pierre Magain (Universite de Liege, Belgium)



A team of European astronomers has used two of the most powerful astronomical facilities available, the NASA/ESA Hubble Space Telescope and the ESO Very Large Telescope (VLT) at Cerro Paranal, to confidently claim the discovery of a bright quasar without a massive host galaxy. Quasars are powerful and typically very distant source of prodigious amounts of radiation. They are commonly associated with galaxies containing an active central black hole.

The team conducted a detailed study of 20 relatively nearby quasars. For 19 of them, they found, as expected, that these super massive black holes are surrounded by a host galaxy. But when they studied the bright quasar HE0450-2958, located some 5 billion light-years away, they could not find evidence for a host galaxy. This, the astronomers suggest, may indicate a rare case of a collision between a seemingly normal spiral galaxy and an exotic object harbouring a very massive black hole.


With masses up to hundreds of millions that of the Sun, super massive black holes are commonly found in the centres of the most massive galaxies, including our own Milky Way. These black holes sometimes dramatically manifest themselves by devouring matter that they gravitationally swallow from their surroundings. The best fed of these shine as quasars (the name quasar is a contraction of quasi-stellar object, as they had initially been confused with stars).

The past decade of observations, largely with the Hubble telescope, has shown that quasars are normally associated with massive host galaxies. However, observing the host galaxy of a quasar is challenging work because the quasar completely outshines the host and masks the galaxy’s underlying structure.

To overcome this problem, the astronomers devised a new and highly efficient strategy. Combining Hubble’s ultra sharp images and spectroscopy from ESO’s VLT they observed their sample of 20 quasars at the same time as a reference star. The star served as a reference pinpoint light source that was used to disentangle the quasar light from any possible light from an underlying galaxy.

Despite the innovative techniques used, no host galaxy was seen around HE0450-2958. This shows that if any host galaxy exists, it must either be at least six times fainter than typical host galaxies, or have a radius smaller than about 300 light-years, i.e. 20 to 170 times smaller than typical quasar host galaxies (which normally have radii ranging from about 6,000 to 50,000 light-years).

“With the powerful combination of Hubble and the VLT we are confident that we would have been able to detect a normal host galaxy”, says Pierre Magain (Université de Liège, Belgium), member of the team of astronomers who conducted the study. “We must therefore conclude that, contrary to our expectations, this bright quasar is not surrounded by a massive galaxy”.

The astronomers did however detect an interesting smaller cloud of gas about 2,500 light-years wide, which they call “the blob”, just next to the quasar. VLT observations show this cloud to be glowing because it is bathed in the intense radiation coming from the quasar, and not from stars inside the cloud. Most likely, it is the gas from this cloud that feeds the super massive black hole, thereby allowing it to become a quasar.

In the Hubble image, a strongly disturbed galaxy, showing all the signs of a recent collision, is seen near the quasar. The VLT observations show it to be forming stars at a frantic rate. “The absence of a massive host galaxy, combined with the existence of the blob and the star-forming galaxy, lead us to believe that we have uncovered a really exotic quasar”, says team member Frédéric Courbin (Ecole Polytechnique Federale de Lausanne, Switzerland). “There is little doubt that an increase in the formation of stars in the companion galaxy and the quasar itself have been ignited by a collision that must have taken place about 100 million years ago. What happened to the putative quasar host remains unknown.”

HE0450-2958 constitutes a challenging case. The astronomers propose several possible explanations. Has the host galaxy been completely disrupted as a result of the collision? It is hard to imagine how that could happen. Has an isolated black hole captured gas while crossing the disk of a spiral galaxy? This would require very special conditions and would probably not have caused such a tremendous disturbance of the neighbouring galaxy as is observed. Further studies will hopefully clarify the situation.

Another intriguing hypothesis is that the galaxy harbouring the black hole was almost exclusively made of dark matter. It may be that what is observed is a normal phase in the formation of a massive galaxy, which in this case has taken place several billion years later than in most others.

The paper on HE0450-2958 is published in the September 15, 2005 issue of the journal Nature.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0511.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>