Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny avalanche photodiodes target bioterrorism agents

14.09.2005


After the anthrax attacks in the United States in 2001 the threat of a larger and more deadly bioterrorism attack -- perhaps from smallpox, plague or tularemia -- became very real. But the ability to detect such biological agents and rapidly contain an attack is still being developed.



In a significant finding, researchers at Northwestern University’s Center for Quantum Devices have demonstrated solar-blind avalanche photodiodes (APDs) that hold promise for universal biological agent detection. Once optimized, these sensitive detectors could be combined with the ultraviolet light-emitting diodes (LEDs) already pioneered by the Center for Quantum Devices to create an inexpensive detection system capable of identifying the unique spectral fingerprints of a biological agent attack.

The Northwestern team, led by center director Manijeh Razeghi, became the first to demonstrate 280 nanometer APDs. These devices, based on aluminum gallium nitride (AlGaN) compound semiconductors, have a photocurrent gain of more than 700.


The tiny-sized APDs should be capable of efficient detection of light with near single photon precision. Previously, photomultiplier tubes (PMTs) were the only available technology in the short wavelength UV portion of the spectrum capable of this sensitivity. These fragile vacuum tube devices are expensive and bulky, hindering true systems miniaturization.

The APD technology may see further use in the deployment of systems for secure battlefield communication. Wavelengths around 280 nanometers are referred to as the solar-blind region; in this region, the UV light is filtered out by the ozone layer providing for a naturally low background signal. Solar-blind APDs are intrinsically able to take advantage of this low background level, while PMTs must use external filters to become solar-blind. This makes secure battlefield communication possible utilizing a combination of compact, inexpensive UV LEDs and UV APDs both developed at the Center for Quantum Devices.

The technology for the realization of solar-blind APDs is based on wide bandgap AlGaN compound semiconductors. To date, no semiconductor-based solar-blind APDs have been reported. This is due to numerous difficulties pertaining to the crystal growth of AlGaN compound semiconductors.

The major obstacle in demonstrating high performance solar-blind APDs is the high number of crystalline defects present in the AlGaN semiconductor material. However, researchers at the Center for Quantum Devices have been able to realize high-quality AlGaN so as to demonstrate avalanche gain in the solar-blind region.

Northwestern’s results were presented recently by Razeghi at the APD workshop organized by Henryk Temkin, a new program manager at the Defense Advanced Research Projects Agency (DARPA).

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>