Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST shielding data help launch shuttle

13.09.2005


As the National Aeronautics and Space Administration (NASA) plans for the next launch of the space shuttle, a critical aspect of the program’s safety is being assured by 5 million pieces of data collected recently by the National Institute of Standards and Technology (NIST).



To help prevent a repeat of the 2003 accident when launch debris damaged the shuttle Columbia, causing it to break up on re-entry, NASA has begun illuminating shuttles with tracking radars during launches and ascent to detect and quantify potential hazards. Concerns about possible disruption of onboard electronic guidance and control systems led NASA to request NIST’s help in determining how much radar energy can penetrate the orbiter in key locations.

During the launch of Discovery in July, radar was used to track debris during ascent and NASA considered the NIST shielding data vital to the resumption of shuttle flights.


NIST has been conducting research in this area for several years and has developed a portable system that efficiently measures the electromagnetic shielding characteristics of airframes. The systempreviously has been used to evaluate both commercial and military aircraft. NIST engineers visited the Kennedy Space Center in Florida to evaluate the space shuttle Endeavor and the hanger in which the measurements were made.

The NIST system incorporates ultra-wideband antennas, a precision optical link between them, and a computerized data analysis system. The two-step measurement process consisted of a reference measurement with the transmitting and receiving antennas outside the shuttle, and a penetration measurement with the receiving antennas at selected locations inside the orbiter. A computerized comparison of these two measurements over specific time periods and frequency bands provided a measure of shielding characteristics in the frequency range 30 megahertz to 6 gigahertz. The data enabled NASA to set safe power levels on radar systems used to detect debris.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>