Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rensselaer researchers create tiny magnetic diamonds on the nanoscale

13.09.2005


Diamonds have always been alluring, but now a team of scientists has made them truly magnetic -- on the nanoscale.



In a paper published in the Aug. 26 issue of Physical Review Letters, the researchers report a technique to make magnetic diamond particles only 4-5 nanometers across. The tiny diamond magnets could find use in fields ranging from medicine to information technology.

Ferromagnetism has been historically reserved for metals, but scientists are becoming increasingly interested in the prospect of creating metal-free magnets, particularly from carbon-based materials. Diamond is a naturally occurring crystalline form of carbon.


Magnets made from carbon could have a number of advantages over their metal counterparts. "Carbon is lightweight, very stable, simple to process, and less expensive to produce," says Saikat Talapatra, a post-doctoral research associate with the Rensselaer Nanotechnology Center at Rensselaer Polytechnic Institute.

Talapatra is lead author of the study, which also included researchers from NASA Ames Research Center in California; Richmond, Va.-based Philip Morris USA; and the University at Albany.

"These findings could lead to a systematic, controllable method for producing magnetic carbon materials," says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and co-author of the paper. "Though the value of the magnetization is much lower than in regular magnets, the nature of the spin interactions in carbon could lead to a number of potential applications."

Magnetic nanocarbons could make promising structures for high-density memory devices and in quantum computers. And because carbon materials are generally compatible with living tissue, these nanostructures could be useful in medical applications such as magnetic resonance imaging (MRI) and the targeted delivery of drugs to specific parts of the body.

Researchers have long known that defects and irregularities in pure carbon materials can give rise to electrons that are not paired with other electrons. Each "unpaired" electron produces a magnetic field by its spinning, and when all of the spins align, the material itself becomes magnetic. Talapatra and his colleagues have developed a way to modify the structure of carbon in a controlled manner by firing clusters of atoms at the diamond particles. This produces magnetism at room temperature, and the total strength of the magnetism depends on the amount and type of atoms used.

The next step, according to Talapatra, is to calculate how the types of defects and their concentration in the pure carbon structure affect the magnitude of magnetism. "We are also working toward developing simpler ways to make magnetic nanocarbons in a more controlled fashion," he says. "The long-term goal is to show some real applications using these structures."

Other Rensselaer researchers involved in the work were Robert Vajtai, laboratory manager for the Rensselaer Nanotechnology Center; Ganapathiraman Ramanath, associate professor of materials science and engineering; Mutsuhiro Shima, assistant professor of materials science and engineering; Gopal Ganesan Pethuraja, research engineer with the Center for Integrated Electronics; and Taegyun Kim, graduate student in materials science and engineering.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>