Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery confirms explosive prediction made by astrophysicists in 1999

13.09.2005


Data reveal insights into formation of stars in early universe



NASA’s Swift satellite and ground-based telescopes have discovered the most distant exploding star on record, confirming a 1999 prediction made by University of Chicago astrophysicist Don Lamb and Daniel Reichart, who was then a graduate student at Chicago.
Now a faculty member at the University of North Carolina, Chapel Hill, Reichart led the team that discovered the afterglow of the explosion, called a gamma-ray burst (GRB), which culminated in the confirmation of his and Lamb’s earlier prediction.

"This is far and away the most distant explosion ever observed in the universe," said Lamb, the Louis Block Professor in Astronomy & Astrophysics at the University of Chicago. "Dan had to have some good fortune to discover the first one, but it wasn’t an accident," Lamb said.



Lamb also lauded Neil Gehrels, who heads the Swift science team. "I’m so thrilled that Swift has made this possible," Lamb said. "It’s wonderful to have the premier scientific objective of the mission come to fruition less than a year after launch."

Gamma-ray bursts are the birth cries of black holes, signaling the deaths of massive stars. They are the most powerful explosions in the universe, lasting anywhere from fractions of a second to many minutes. They occur almost daily, come from any direction in the sky, and are followed by afterglows that are visible for a few days at X-ray and optical wavelengths.

In astronomical terms, the Sept. 4 GRB has a redshift of 6.29. Redshift is a measure of the amount that light from a distant object is shifted toward the red end of the light spectrum by the expansion of the universe. The higher the redshift, the greater the distance and the younger the universe was when the light was emitted.

A redshift of 6.29 translates to a distance of approximately 12.6 billion light years from Earth. Lamb and Reichart had predicted that Swift would be able to detect GRBs at such great distances at a scientific meeting in 1999, and in a paper published in the June 10, 2000 issue of the Astrophysical Journal.

Back then, most astrophysicists thought that the most distant GRBs would be found at a redshift of 2 or 3. Beyond that distance, there would be no GRBs, scientists assumed, because few massive stars would have formed by then.

But Lamb and Reichart’s calculations, based on emerging cosmological evidence, showed that the bursts should occur as far away as a redshift of 20, (13.3 billion light years distant). The most distant known object today is a galaxy at a redshift of 6.5 (12.7 billion light years away).

Reichart received his Ph.D. in astronomy and astrophysics from the University of Chicago in 2000, and became determined to find high-redshift GRBs. Using coordinates of the GRB relayed to ground stations by the Swift satellite on Sept. 4, Reichart’s team at North Carolina discovered the afterglow of the burst with the Southern Observatory for Astrophysical Research (SOAR) telescope in Chile.

Over the next several nights, his team conducted further follow-up observations with SOAR and the Gemini South Telescope, also in Chile. Also making key follow-up observations was a team led by Nobuyuki Kawai of the Tokyo Institute of Technology, using the Suburu Observatory in Hawaii.

"This burst smashes the old distance record by 500 million light years," Reichart said. "We are finally starting to see the remnants of some of the oldest objects in the universe."

Lamb anticipates that Swift will detect many more GRBs at even greater distances. "Gamma-ray bursts are uniquely powerful and probably the only way for a very long time to observe the moment of first light, that redshift when the very first stars formed," he said.

In fact, high-redshift GRBs open a whole host of potential studies. Scientists now will be able to begin filling in new details about the star-formation history of the universe and the creation of the heavy elements that were necessary for the emergence of life on Earth. "Now the fun begins," Lamb said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>